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AN EMPIRICAL TEST OF ALTERNATIVE PEST
DAMAGE CONTROL MODELS

TAE-JIN KWON*

§. Introduction

Recently, a great deal of concern is expressed about the negative
effect of pesticides although relatively few results are reported on the
quantitative estimation of adverse effect of pesticides. A number of
studies suggest that earlier studies overestimated the productivity of
pesticides. For example, Headly estimated that marginal product of
one dollar's pesticides was $3.90 - $5.66 which is higher than any
other input. Campbell indicated that the marginal dollar's worth of
pesticides yields around $12 worth of output.

Lichtenberg and Zilberman demonstrated that overestimates of
pesticide productivity is due to the misspecification of production
function. Overestimates of the marginal productivity of pesticides are
possible whenever model specification renders decreasing marginal
effectiveness of pesticides. These biases occur when pesticides are
directly incorporated with yield function like conventional input.
Carrasco-Tauber and Moffitt argued that the magnitude of the
pesticide productivity estimate obtained by Headly is not relevant to
the problem of funtional specification. Fox and Weersink argued
increasing returns to pesticides are possible for the case of typically
assumed concave control and damage functions. The productivity of
increasing returns increases when the relative curvature of the control
function is less than that of the damage function. Besides Lichtenberg
and Zilberman, Fox and Weersink, several recent studies on pesticide
productivity have shown that pesticide productivity depends on the
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functional forms of control and damage functions(Carrasco-Tauber
and Moffitt, Cousens, Pannell, Swinton).

Regarding appropriate model specification, Carrasco-Tauber
and Moffitt used the information criterion (AIC) suggested by
Akaike. The main purpose was model selection rather than
hypothesis test. Frank, Beattie, and Embleton used nonnested
hypotheis tests to evaluate several competing models. Cousens
compared several competing functional forms for damage function
using the residual sums of squares. Few studies on bioeconomic
model used statistical method to show appropriate functional forms
for control and damage function based on real data.

The purpose of this paper is to use a large winter wheat data set
to test for increasing returns to herbicide with common control and
damage functional forms, and to compare the statistical performance
of alterantive weed damage functions for winter wheat.

li. Conceptual Framework for Pest Control and Damage
Functions

Lichtenberg and Zilberman argued that the contribution of herbicides
to production of wheat differs from that of standard input like labor,
machinery, and fertilizer. The productivity of herbicides is
overestimated when herbicides are directly entered into yield function
as an argument. A two-step procedure was suggested to determine
the optimal level of pesticides. At the first step, profit maximizing
abatement level is determined through a profit function. A damage
abatement function has to be defined by herbicides and it is
incorporated in the yield function. A profit function is defined by the
damage abatement function and yield function. The damage
abatement function is defined as the proportion of the yield loss
capacity of weeds eliminated by the application of herbicides. In this
case, a yield function is defined as eqation (2.1):

Y=£(X, G(H)) 2.1)

where Y is yield, X is a standard input vector, G(H) is damage
abatement function, and H is the level of herbicide application. G(H)
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is defined as the proportion of the destructive capacity of weeds
eliminated by the application of a level of herbicide H. A damage
abatement function is defined on (0, 1) interval with G=1 denoting
complete control of weeds, and G=0 denoting completely ineffective
control of weeds. In the second step, an optimal level of herbicide
(H) is obtained by minimizing abatement cost. Blackwell and
Pagolatos agrued that Lichtenberg and Zilberman did not consider
state variables in the model specification. They also argued that a
control function rather than a damage abatement function should be
entered in the yield function. A control function is defined as the
proportion of weeds remaining after herbicide application. Hence, the
yield function suggested by Lichtenberg and Zilberman is modified as
equation (2.2):

Y=£(X, Z(-)) (2.2)

where Z(-) is a weed density function which is defined by weed
density before herbicide application, and the level of herbicides.

Let's narrow down our scope to the relationship between the
yield and weed density function. According to Blackwell and
Pagolatos, the weed density function is defined as:

7=7,[1-C(H)] (2.3)

where Z is weed density after herbicide application, Z, is initial weed
density before herbicide application, and C(H) is a control function.
The control function is defined by the level of herbicides. It is
constrained by the (0, 1) interval. When C(H)=0, herbicides have no
effect on the control of weeds. When C(H)=1, herbicides have
complete control on weeds. Now weed density is incorporated in the
yield function through a damage function:

Y=Y,[1-D(2)] 24)

where Y, is weed-free yield, and D(Z) is a damage function which
represents the proportion of yield loss by weed density Z in the yield
function. The damage function is constrained by the (0, 1) interval as
the control function because damage cannot exceed weed-free yield.



70 Journal of Rural Development 20(Summer 1997)

lil. Empirical Models

The empirical models are based on six years of data from field
experiment in the Palouse region, Washington, U.S.A. The USDA-
ARS Integrated Pest Management(IPM) project was developed to
assess the appropriate level of chemical weed control for conservation
and conventional tillage systems in the area. A brief summary of the
experiment follows. The IPM experiment compared 12 complete
farming systems: (2 rotations) x (2 tillage levels) x (3 weed
management levels). The experiment was a randomized complete
block, split-plot design with four replications. It was repeated for six
years over 1986 through 1991 yielding 432 observations for winter
wheat. Three levels of chemical weed management were chosen to
correspond roughly to 90%, 70%, and 50% of the recommended level
rate of utilized herbicides in the area. Exact rates and combinations
of herbicides within these levels were determined annually by the
project's weed scientists. The experiment attempted to reflect current
farm production methods by using full-size farm machinery, and to
utilize larger plots than is normal in research situations.

The density for all weed species was counted two times each
year. Spring weed counts were recorded before postemergence
herbicide applications, and summer weed counts were taken before
crop harvest. Every weed species was counted in three one-square
meter quadrates per subplot in both periods. Weed biomass of every
species was measured from the same three one-square meter areas
where weed species were counted prior to crop harvest each year.

A bioeconomic model links biological relationships to an
optimizing economic model. In this study, the bioeconomic model
was developed in a three stage process. First, preharvest weed
density functions were specified to determine weed density levels
after herbicide applications. Second, a yield response function was
specified to describe the relationship between winter wheat yield,
aggregated surviving weed density, and other variables. Finally, the
estimated results were incorporated into a profit function to determine
profit maximizing rates for three herbicide classes. Optimal herbicide
rates are conditional upon the state variables included in the
biological and economic relationships. These state variables include
spring weed densities, soil moisture, soil organic matter, tillage type,
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preceding crop, preplant nonselective herbicide use (in conservation
tillage only), herbicide prices, herbicide application costs, and
expected crop prices. If the decision model is to be used by farmers,
all state variables must be known or have formulated expectations at
the time the POST herbicide weed control decision is made.

Several functional forms are suggested for control function in
the literature. Fox and Weersink suggested seven alternative
functional forms--Pareto, Exponential, Logistic, Weibull, Rectangular
hyperbola, Linear, and Square root-- for control and damage
functions. An exponential function is often used for a control
function(Auld et al., Cousens, Feder, Moffitt, Weersink et al.).
Exponential control function was selected from the seven proposed
functional forms because its estimates have expected signs and
relatively higher R? in the nonlinear least square estimation'. When
an exponential control function is adapted, the weed density functions
are specified as:

WD=SWDg¢*i+dDH,+ é a, TIL + IZ;C,CR, (3.1
i=1,2,3;j=2,3

where WD, is preharvest (surviving) weed density (no. m?) of the i"
weed subgroup. More than 50 weed species were identified in the
IPM experiment over 6 years, but many species had relatively low
populations. In this study, weeds were classified into three
subgroups: summer annual grasses (WD,), winter annual grasses
(WD,), and broadleaves (WD,). SWD, is spring weed seedling
density(no. m?) of i* subgroup, Hj's are application rate (proportion
of maximum labeled rate) of j* herbicide type (H,=POST broadleaf,
and H,=POST grass), DH, is a discrete variable for preplant
nonselective herbicide application(DH, = 1 for application, and DH, =
0 for no application), TIL,'s are discrete variables (0 or 1) for tillage
system (TIL,=1 and TIL,=0 for no-till, TIL,=0 and TIL,=1 for chisel,
and TIL,=TIL,=0 for conventional tillage), CR/'s are discrete variables

' Unreported results showed that a number of observations were missing with Pareto
and Weibull functions, several incorrect signs with Logistic functions, low R*s
with Linear and Square-root functions, and non-convergence with Rectangular
hyperbolic model.
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for previous crop (CR, = 1 and CR, = 0 for spring wheat, CR, = 0 and
CR, = 1 for spring pea, and CR, = CR, = 0 for winter wheat), and a's,
b's, ¢'s, and d are estimated coefficients. Coefficient d is hypothesized
to be negative under the expectation that application of nonselective
herbicide decreases preharvest density of weed type i, other factors
equal. Coefficients b, and b, are expected to be positive for
herbicides intended to control weed type i. Coefficients a, and a, are
expected to be positive indicating that conservation tillage increases
weed competition relative to conventional tillage (Young F. L. et al.).
No prior signs are hypothesized for ¢, and c,, which indicate the
influence of preceding crop on the surviving weed density in winter
wheat.

A total of 15 herbicides were applied to winter wheat over the 6
years of the experiment. These herbicides were categorized into three
subgroups: nonselective preplant, POST broadleaf, and POST grass®.
An index of “effective application rate * was developed to aggregate
different herbicide types. An index value of 1.0 was given to the
manufacturer's label rate for all herbicides in each subgroup.
Applications below the label rate received an index of k equal to the
proportion of the label rate so that 0 < k < 1. Then each herbicide was
weighted by an “efficacy index” (EI,), 0 < EI, < 1, within the
subgroup. The “efficacy index " was assigned based on the rated
relative performance of a herbicide within the subgroup (Boerboom et
al.). The index of “effective application rate” for a specific herbicide
in a subgroup equaled k times EI,. These effective application rates
were summed to obtain the aggregate application rate for a herbicide
subgroup.

Each weed subgroup competes not only with the crop but with
the other weed subgroups. All the weed subgroups are also affected
by the same weather and other external influences within a given year.
It is supposed in the models that the statistical error terms in the
different preharvest weed density functions for a crop are correlated

* The aggregation of 15 herbicides into 3 subgroups was statistically necessary given
that some products were used only 1 or 2 years and/or over a narrow range of rates.
We also believe the added flexibility of permitting growers to select exact
herbicides from a general herbicide subgroup recommendation is practical for on-
farm use. Confronted with weed species shifts within weed types, with changing
herbicide availabilities and prices, and emerging environmental regulations,
growers are likely to welcome some flexibility in model recommendations.
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with each other within the same time period, while they are
uncorrelated in different time periods. To accommodate the
dependency in the error structure, the Seemingly Unrelated
Regression (SUR) technique was used to estimate density functions
(Judge et al.). The Breusch-Pagan test results supported the use of
SUR estimates rather than estimates from single equations.

A few alternative fuctional forms are introduced for a damage
function in the literature. The rectangular hyperbolic model is most
frequently used for damage function in the literature (Cousens,
Pannell, Swinton). Logistic model is often used for damage function
(Kwon et al.). Cousens compared several models in winter wheat
with a single weed species, but not with multiple weed species. In
this study, a modified Mitscherlich-Baule production function (Beattie
and Taylor) was combined in turn with alternative damage functions.
The specification of the yield response function with rectangular
hyperbolic weed damage is defined as:

iTWD
Vb, (1-e)(1-em M) |1« e (3.2)
100(1-+TWDJj) |

+a,TIL, +a,TIL,+c,CR, +¢,CR,

Common variables in equation (3.2) are defined as above. Y is crop
yield (bu ac'), b, is maximum potential crop yield with nonlimiting
soil moisture, nonlimiting organic matter, and no weed competition.
SM is spring soil moisture (%) of the top 30cm, OM is soil organic
matter (%) of top 30cm. Coefficient j is the maximum percentage
yield loss as weed density approaches infinity. Estimates i and j were
expected to be positive to generate the characteristic rectangular
hyperbolic shape of the damage function (Cousens, Kwon). The
symbols b,, b, b, ¢,, and ¢, are estimated regression coefficients.
Parameter estimates for b,, b,, and b, were expected to be positive to
reflect higher expected yield with higher soil moisture and organic
matter. No prior signs were hypothesized for tillage and preceding
crop coefficients. Alternative functional forms for the damage
function are shown in (Table 1).

The weed competition index, TWD(weighted number of weeds
m), is calculated from weighted predicted preharvest weed density
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TABLE 1 Alternative Damage Functions®

Functional form

Damage function

f(TWD) f(TWD) f"(TWD)
LOgiStiC m jme-(imwm _j:me-(i+jTWD)(1_e—(i+jTWD))
1 4e{HTWD) (1+e-(i+jTWD))2 (1+e-(i+j'WVD))3
Rectangular iTWD 1 =21
hyperbolic 100(1+iTWD/j)  100(1+iTWDJ/j)’ 100(1+iTWD/j)’
Exponential 1-e™ e -i'e VP
Weibull -1, y
1-e™ i f(TWD) -1TWD"']
D
Pareto i k " -1(1+l)
[TWD] k [ TWD ] [TWD]
Linear iTWD 1 0
Square-root ivTWD 1 i
2vTWD 4TWDYyTWD
*TWD is the weed competition index.
levels over subgroups:
TWD=X wWD, i=1,2,3 (3.3)

where the weed competition index, TWD, represents the overall
competitive capacity of multiple weeds with winter wheat, and w;'s are
competition indices by weed type. A competition index of 1.0 was
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given to winter annual grasses as a standard for winter wheat. The
weight assigned to the other three weed subgroups is proportional to
the frequency weighted average biomass of weeds in that subgroup
relative to the frequency weighted average biomass of winter annual
grasses. Biomasses were based upon average preharvest dry weight
of all weed species over 6 years. The weed competition indices
assume that the competitive contribution of each weed type is
proportional to its average preharvest biomass. The WD, for each
weed group is predicted from equation (3.1).

SHAZAM (White) nonlinear regression model was used to
estimate the yield response functions. There is no guarantee that the
estimation process for a nonlinear model will converge to a unique set
of coefficients for a given set of starting values. If it converges, there
is no way to identify whether it is a local or global optimum.
Therefore, the model was reestimated with different starting points to
verify that a global optimum had been achieved. All reported optima
in this study were stable based on these tests.

Two measures of goodness of fit were used to select final yield
response functions for each functional form: log-likelihood and MLE
of sigma squared . Although higher log-likelihood and lower MLE of
sigma squared, these values cannot be used to select a specification
from several alternative nonnested models (Davidson and
MacKinnon, 1993). Consequently, a P-test developed by Davidson
and MacKinnon(1981) was used to test the seven yield model
specifications.

The profit function for this problem can be written as a function
of herbicide applications as:

m = PY(H)-P,H - AC(H) - OC (3.4)

where 7 is net returns over total costs ($ ac"), Y(H) is the predicted
yield (bu ac') from equation(2.2), H is the vector of herbicide
applications (proportion of label rate), P is crop price ($ bu'), P, is
herbicide prices ($ label rate”' ac"), AC is herbicide application cost
($ ac") which is a function of the herbicides applied, and OC is other
production costs ($ ac'). Other costs include land and miscellaneous
fixed costs, operator labor, fertilizer, machine operations, and seed,
but exclude a charge for management (Kwon, Painter et al.).
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The herbicide price for each herbicide subgroup was based on a
frequency of use weighted average of the prices of herbicides within that
subgroup used over the 6 year experiment. The use of weighted average
prices for herbicide types decreases the precision of economic
recommendations, but it is a necessary compromise given the infeasibility
of incorporating all 15 utilized herbicides as decision variables. Average
application cost ($ ac") for herbicide types were computed on the same
frequency-weighted basis as herbicide type prices.

IV. Empirical Results

Estimated coefficients for the three prehavest weed density functions
(WD) are presented in (Table 2). Coefficients of herbicides (H, and
H.) have expected positive signs and are statistically significant at the
1% level. POST broadleaf herbicides (H,) significantly reduced the
winter annual broadleaf weed population. POST grass herbicides (H)
helped control both winter and summer annual grass populations, but
the coefficient was not so big as that of POST broadleaf herbicides.
Compared to the coefficients of herbicides, coefficients of POST
broadleaf herbicide(H,) are relatively higher than those of POST grass
herbicides(H,) and very close in both models. This means that POST
broadleaf herbicides are more efficient to control broadleaves than
POST grass herbicides control grasses.

A binary variable for preplant nonselective herbicide(DH,) has
expected negative signs except for winter annual grasses in three
wheat models. Nonselective preplant herbicides applied to no-till
winter wheat after spring peas significantly suppressed summer
annual grasses and broadleaves. DH, was not significant at the 10%
level in predicting density of winter annual grasses in both models.
The failure of H,(nonselective preplant herbicides) to show significant
control of winter annual grasses might be partially explained by the
IPM experiment data. In only 2 out of 6 years (1987 and 1990), fall
soil moisture was sufficient to germinate weeds and to warrant
application of nonselective preplant herbicides (H,) before planting
no-till winter wheat (Young D.L., T.J.Kwon, and F.L.Young). Over
all conservation tillage treatments, preplant nonselective herbicide
was applied only to winter wheat harvested in 1987, 1989, and 1990.
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TABLE 2 Estimated coefficients of preharvest weed density functions
for three weed subgroups in winter wheat using seemingly
unrelated regression

Variable® WD/ wD, WD,
H, ¢ 2.659**
(0.137)
H, 0.670%*" 2.986**
(6.75) (20.34)
DH, -2.451 0.560 -7.050**
(-0.43) (0.11) (-4.31)
TIL, 13.267** 9.325% 9.640**
(3.05) (2.46) (7.24)
TIL, 18.778** 16.269** 2.770*
(4.25) (4.16) (2.37)
Log-likelihood function -6080.93
Number of observation 432

“H, = POST broadleaf herbicide, H, = POST grass herbicide, DH, = discrete variable
for preplant nonselective herbicide (DH, = 1 for application, DH, = 0 for not
application), TIL; = discrete variables for tillage (TIL, = 1 and TIL, = 0 no-till, TIL,
=0 and TIL, = 1 for chisel plow).

*Weeds (plants m?) were categorized as summer annual grasses (WD,), winter
annual grasses (WD), and broadleaves (WD;).

«* and ** indicate statistical significance at the 5%, and 1% levels, respectively. t-
values are in parentheses.

‘Blank entries indicate that the variable was excluded because it was not relevant to
the particular weed type.

As hypothesized, mid-summer weed populations of all weed groups
in winter wheat increased with no-till (TIL,) and chisel plowing
(TIL,) relative to conventional tillage.

Nonlinear maximum likelihood estimates of seven damage-yield
response functions are presented in (Table 3). All estimates have
expected signs and most of estimates are statistically significant at the
1% level. Weed competition index (TWD) was estimated as follows:

TWD = 0.93WD, + WD, + 0.47WD, (4.1)
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TABLE3 Estimated coefficients of yield response functions
for alternative models

Coefficients’  Logistic’ Rectangular Exponen- Weibull ~ Pareto  Linear  Square-
(m=0.4) hyperbolic tial 100t

b, 95196 95880 91711 23819 87133 89418 97216
(1529F (1624 (1888) (21.80) (22.58) (2243) (17.73)

b, 0156 0154 0154 0156 0154 0153 0156
(1051)  (1066) (11.20) (1057) (1041) (10.80) (10.66)

b, 0826 0809 0873 1059 1100 0972 0839
(445)  (446)  (451) (397) (386) (469) (4.54)

i 2883 1156 0004 0033 0028 0002  0.040
(024) (304  (474) (458) (424) (7.03)  (896)

j 0092 68448
(45) (581

a, 20679 2292 17451 16577 15240 14513  21.072
882 (767) (1B) (647) (651) (742)  (8.67)

a, 15655 16731 9927 5519 3660 4541 13687
(G08)  (441) (3000 (178) (135 (190) (463)

o 9111 9676 9555 8784 865  9.150  9.562
@415 (425 (424 (365 (3T) (404 (419

o 25906 26741 25641 24390 23979 24403 26247
(1222) (1184) (11.05) (1034) (1062) (1091) (11.69)

Log-likelihood -1820  -1819 -1823 1839  -1841  -1828  -1818

MLE of & 26738 26555 27107 29158 29387 27639 265.13

*Coefficients are defined in the Table 1 and text following equation (3.2).

*The MLE of ¢* was lowest for m equnl to 0.4 in the logistic damage-yield response
function. This value for m was selected from the results of a search ranging over 0.1
to 0.7 in increments of 0.05. The m is a maximum damage level under high weed
density.

t-values are in the parentheses.
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Nonnested hypothesis tests were conducted to compare
alternative models. Versions of the J-test and P-test have been
developed for nonlinear models. It is known that the P-test is more
generally used than the J-test. The J-test cannot be used when all
parameters of null hypothesis model are not linear (Davidson and
MacKinnon, 1993, p. 382). The P-test was performed by temporarily
holding each hypothesis as null and testing in a pairwise fashion with
each temporary alternative. Each model was also tested against
alternatives jointly. A t-value is used as test statistic for pairwise
tests, while chi-square with 6 degrees of freedom is a correct test
statistic for the joint hypothesis tests.

Test results are shown in (Table 4). The purpose of nonnested
tests is not to choose one out of a fixed set of models as the “best”

TABLE 4 Nonnested Hypothesis Test Results

Null hypothesis*

Alternative

hypothesis LogisticRectangular Exponen- Weibull Pareto Linear Square-
hyperbolic tial root

Logistic 1.10 247 648**  6.16** 4.23** 190+

Rectangular 3.49** 245%%  6.83**  641™ 410> 0.79

hyperbola

Exponential 2.32% 1.04 6.06** 577** 301** -0.75

Weibull 0.45 -1.18 1.29 825** 201* -129

Pareto 024 -140 0.98 -7.97** 1.83+ -1.45

Linear 201* 141 024 5.48**  530** -0.65

Square- 3.69%* 126 283**  6.93**  632** 4.16**

root

Joint test® 64.93**  60.95**  68.03** 111.17%* 106.73** 78.89** 59.98**

*‘Under the null hypothesis, test statistics for pairwise test are distributed as standard
normal. A +indicates statistical significance at the 10% level. A single and double
asterisks are at the 5% and 1% levels, respectively.

*Test statistics for joint test are distributed as chi-squared with 6 degrees of freedom.
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one. Since nonnested hypothesis tests are specification tests,
nonnested tests may tell us that neither model seems to be compatible
with the data. The pairwise tests illustrate that a rectangular
hyperbolic and square-root models are favored over the other models.
When the rectangular hyperbolic model is compared to the other
models, the null hypothesis cannot be rejected at a 5% significance
level. The same results are obtained when the square-root model is
compared to the other models. However, the joint P-test results did not
answer the question of which is the superior model because all the null
hypotheses rejected at the 1% significance level. When the square-root
model is compared to the other models, the null hypothesis is rejected
against the logistic model at the 10% significance level. The
Exponential model is not rejected against Pareto, Weibull, and Linear
Models, while it is rejected against Logistic, Rectangular hyperbolic,
and Square-root models at the 5% significance level.

Let's figure out the possibility of increasing returns to
herbicides. The marginal product of postemergence grass herbicide
(H,) is defined as:

oY _ 3y
oH, oTWD

(-0.623SWD,e 52 986SWD,e %) (4.2)

which will be nonnegative for the three models. The change in
marginal product of the same herbicide is defined as:

b 2
21}; _ a]?\gly (-O.623SWD,C'°'57OH-‘- 2.986SWD2e-2.986H3)2 (4_3)
= 0L (0.417SWD " 4 8.ILGSWD,e ")

which is equally expressed in all three models. Now, d*Y/0H; is
possible to be positive at high TWD, while 9°Y/dH; is negative at low
TWD. The level of weed density (TWD) is decided by the magnitude
of marginal yield loss from weed (0Y/0TWD) and the changing rate
of marginal yield loss from weed (8°Y/dTWD?) in the three models.
The marginal yield loss from weed and the changing rate of marginal
yield loss are calculated by using (Table 1 and 3).

(Figure 1, 2, and 3) show the marginal product of postemergence
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FIGURE1 Yield Response and Returns to One Label Rate of
H; in Logistic Damage Function
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FIGURE3 VYield Response and Returns to One Label Rate of
Hs in Exponential Damage Function
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grass herbicide (dY/dH;), changing rate of marginal product
(8°Y/3H3), and wheat yield corresponding to weed density (TWD) for
Logistic, Rectangular hyperbolic, and Exponential damage functions,
respectively. Increasing returns to herbicide is always possible under
high weed population for the three different models. It is possible
whenever over 40 weeds per square meter were left after application
of one label rate of postemergence grass herbicide in Logistic model.
This means that applying over one label rate of postemergence grass
herbicide generates higher profit than applying one label rate of
herbicide application at high weed density as long as marginal value
product (MVP) of herbicide is larger than marginal factor cost (MFC)
of that herbicide. The marginal factor cost of postemergence grass
herbicide is 7.1 bushel per acre. Therefore, more herbicide can be
applied in addition if the number of weed density is expected to be
left 20 to 70 per square meter after applying one label rate of
postemergence grass herbicide.
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In case of Rectangular hyperbolic model, increasing returns to
herbicide is possible when weed density is higher than 300 per square
meter after applying one label rate of postemergence grass herbicide.
It is possible over 420 in case of Exponential model.

Compared to the three models, Exponential function is most
conservative to reveal increasing returns to herbicide, while Logistic
model has higher possibility to show increasing returns to herbicide
than the other models. (Table S) shows that the Logistic model
recommends relatively higher rates of optimal herbicides than those
of the other models. However, the predicted optimal herbicide rates
are lower than actual application rates in the IPM experiment.
Returns to herbicide are affected not only by functional forms of
damage function but also by control function. If increasing returns to
herbicide is possible under relatively lower weed density, wheat
growers have more chance to apply higher rate of herbicide with that
model. By economic theory, an optimal rate of herbicide is decided
by marginal value product and marginal factor cost of herbicide under
decreasing returns to herbicide. Given conventional concave profit
functions, whenever MFC exceeds M VP, potentially small decrease in
herbicide use will improve profit. The reason why every model
recommends lower optimal rates of herbicide than actual application
rates(H,=1.00, H,=0.67) is explained by relatively lower MVP's than
MFC's. If increasing returns to herbicide is possible, the optimal rate
of herbicides will be substantially on a higher level. However, it is
almost impossible that those circumstances happen in wheat
production under proposed three models.

V. Conclusions

Findings in this paper might serve as a caution to bioeconomic weed
management modelers. Small changes in functional specification of
crop yield and weed control functions cause large differences in profit
maximizing recommendations for herbicides.

This paper confirms that an exponential control function
reflects better results than the other alternative functional forms. The
pairwise P-tests show that a rectangular hyperbolic and a square-root
damage models are favored over the other models.
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TABLES5 Comparison of Estimated Managerial Performance of
the Three Models for WinterWheat after Winter Wheat
under Conservation Tillage®

Logistic Rectangular Exponential

Item .
hyperbolic

MVP's and MFC's
MVP,*($ 1.1.") 13.8 8.6 7.6
MVP,*($ 1.1.) 28.4 17.7 15.8
MVP,/MVP, 21 2.1 2.1
MFC,($ 1..") 15.9 159 159
MFC, «($ L.1.") 28.4 28.4 28.4
Optimal herb. rate
H,(l.r.) 0.92 0.70 0.71
H,(l.r) 0.64 0.34 0.36
Yield’(bu ac™ 80.6 81.6 84.1
Profit<(§ ac?) 54.6 70.7 79.9

*H, = POST broadleaf herbicide, H; = POST grass herbicide, 1.r. = label rate.

*MVP's = marginal value product for an additional application evaluated at the
means of herbicide use (one label rate of POST broadleaf herbicide and 0.67 label
rate of POST grass herbicide) and other variables in the experiment.

‘MFC's = marginal factor cost for an additional herbicide application which include
herbicide and application costs.

‘Yield predicted by the model using the average state variables and optimal herbicide
rates.

Predicted profit by the model using expected wheat market price($3.98 bu*),
herbicide costs(H,=$11.37 1.r.", H,=$23.86 1.r."), herbicide application cost($4.5 1.r."),
and the other costs($233 ac?).

Pesticide productivity depends on the functional forms of
control and damage functions. Over several decades debate on the
possibility of increasing returns to herbicide is being continued. It is
possible to find increasing returns to herbicide under high weed
population although the possibility is very low under the normal
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weather and field condition. Both a rectangular hyperbolic and an
exponential control functions recommend lower rates of postemergence
herbicide than conventional recommendation under moderate weed
population. An exponential damage function recommends lower rates
of postemergence herbicide than a Rectangular hyperbolic model
under low weed population. However, more frugal herbicide
recommendation is rendered under high weed population when a
Rectangular hyperbolic damage function is adopted in the decision
model. It is more appropriate to use well specified decision models
than conventional conjecture for herbicide recommendation. With
selected models, less herbicide and more profit are resulted than those
of conventional recommendation. However, preferred models for
farm use will require field comparisons.
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