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GROWTH EMPIRICS: CONVERGENCE STUDY BY
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ABSTRACT

This paper examines recent convergency issues in economic
on growth. Taking the recent works by M-R-W and Islam as its
starting point this paper analyzes how these results change
with the adoption of the panel data approach. The regression
equation used in the study of convergence is reformulated
info a dynamic panel model with individual country effects
and is estimated by the panel data procedures. It hardly
seems to say that there exists a reasonable evidence of a
rapid convergence considering the time period required for
the convergence

I. Introduction

In neoclassical growth models, such as Solow (1957) or
Swan (1956), a country’s per capita growth rate tends to be
inversely related to its starting level of per capita income. In
particular, if countries are similar with respect to structural
parameters for preferences and technology, then poor countries
tend to grow faster than rich countries. Thus, there is a force that
promotes convergence in the levels of per capita income across countries.

* Fellow. Korea Rural Economic Institute. Seoul. Korea.
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The main element behind the convergence result in
neoclassical growth models is diminishing returns to capital. Poor
countries, with low ratios of capital to labor, have high marginal
products of capital and thereby tend to grow at high rates. This
tendency for low income countries to grow at high rates is
reinforced in the extension of the neoclassical models that allow
for international mobility of capital and technology.

The hypothesis that poor countries tend to grow faster
than rich countries seems to apply empirically for economies that
have similar underlying structures -- such as the regions of the
major developed countries or among the OECD countries -- but
seems to be inconsistent with the heterogeneous collection of
countries that includes the poor countries of Africa, South Asia,
and Latin America, which indicates that per capita growth rates
have little correlation with the starting level of per capita product.

FIGURE 1. Annual Average Growth Rate of per Capita GDP vs. GDP
per Capita 1960, (22 OECD countries)
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Figure 1 and 2, which use the data from the Penn World Table
5.6 (PWT5.6), show these types of relationship. They plot the
average growth rate of per capita real gross domestic product
(GDP) from 1960 to 1985 against the logarithm of real per capita
GDP in 1960. Figure 1 shows a striking inverse relationship, that
is, the places that were poorer in 1960 grew significantly faster
in per capita terms over the subsequent 25 years. Thus, the
behavior of growth rate across 22 OECD countries is consistent
with convergence, in the sense of the poor places growing faster
than the rich one.

FIGURE 2. Annual Average Growth Rate of per Capita GDP vs. GDP
per Capita 1960, (94 countries)
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In contrast to the clear inverse relationships in Figure 1, the
growth rate and initial level are not significantly related to the
1960 value of per capita real GDP in Figure 2. The
heterogeneous cross-country data therefore do not reveal
convergence; the poor countries did not tend to grow faster than
the rich, and hence, the typical poor country did not tend to
catch up to the typical rich country.

This finding accords with recent models, such as Romer
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(1986) and Lucas (1988), that assume constant returns to a broad
concept of capital, which includes human capital. In this model
the growth rate of per capita product is independent of the
starting level of per capita product. Another response to this
finding was the proposition of the concept of “conditional
convergence.” Barro (1989) showed that if differences in the
starting level of human capital are controlled for, then the
correlation between the starting level of income and subsequent
growth rate turns out to be negative even in the wider sample of
countries. Barro and Sala-i-Martin (1992) (hereinafter B-S) and
Mankiw, Romer, and Weil (1992) (hereinafter M-R-W) developed
this concept of conditional convergence and emphasized the fact
that the neoclassical growth model did not imply that all
countries would reach the same level of per capita GDP but that
countries would reach their respective steady states.

A common feature of existing empirical studies on this
problem of convergence was preceded under the assumption of
identical aggregate production functions for all countries. Since
most of these studies have been conducted in the framework of
single cross-country regression, it was econometrically difficult to
allow for some differences in the production function in such
framework. However, the country-specific aspect of the aggregate
production function, which is ignored in the single cross-section
regression, is generally correlated with the included explanatory
variables, and hence this creates omitted variables problems.

Unlike single cross-section analysis, the panel date
framework makes it possible to allow for such differences in the
form of unobservable individual “country effect.” Recent several
scholars, including Islam(1995), Knight-Loayza-Villanueva (1993),
implemented a panel date approach to deal with this issue. They
argued that persistent differences in technology level and
institutions are significant factor in understanding cross-country
economic growth. There are, however, some drawbacks in their
estimation methods, and so in hypothesis tests, because such tests
rely generally on the estimated coefficient of the initial value of
the lagged dependent variable in dynamic panel models.
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As Nerlove (1996) notes, there exist some bias in this test.
One source of such bias is omitted variables, especially
infrastructure and investments in infrastructure over time, and the
natural resource available to each country in cross-sectional or
panel studies. Because such variables are likely to be correlated
with savings of investment rates in conventional or human capital
and with population growth rates, it is not altogether clear what
the net effect of omitting them on the coefficient of the initial
value will be in a single cross-section regression model. Thus,
these differences across countries of regions will systematically
lead to biased conclusions. This typed source of bias has been
well-known since the early paper by Balestra and Nerlove (1966)
and is well-supported by the Monte Carlo Studies reported in
Nerlove (1971).

Second, since there are likely to be many sources of cross
country or cross region differences, many of which cannot be
observed of directly accounted for, it is natural to try to represent
these by fixed effects in a panel context as Islam did. But, as is
well-known from the Monte Carlo investigations reported in
Nerlove (1971) and demonstrated analytically by Nickell (1981),
the dynamic model with fixed effects biases the coefficient of the
initial value of dependent variable, which is included as an
explanatory variable in the regression equation, downwards, towards
zero and thereby towards support for the convergence hypothesis.

Alternative estimates based on more appropriate random
-effects model, such as two-stage feasible Generalized Least
Squares (FGLS) or Maximum Likelihood Estimation conditional
on the initial observations is also biased in small samples and
inconsistent in large samples. In the case of Instrumental Variable
estimates also have poor sampling properties or are difficult to
implement. Recently, Nerlove and Balestra (1996) suggested the
alternative of unconditional maximum likelihood.

This paper takes the recent work by M-R-W and Islam as
its starting point and examines how the results change with the
adoption of the panel data approach. The regression equation
used in the study of convergence is reformulated into a dynamic
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panel model with individual country effects and the panel data
procedures is used to estimate it.

The paper is organized as follows. In Section II, the
growth equation is reformulated as a dynamic panel data model.
In Section III, the relevant issues of panel data estimation for
growth equations and the data and samples are discussed. Data,
sample, and estimation results are presented in Section IV, and
Section V contains their interpretation. Section VI involves conclusions.

I1. Growth Regression As A Dynamic Panel Data
Model

The usefulness of a panel data approach can be illustrated on the
basis of the work by M-R-W and Islam. They started with the
following “textbook Solow model” featuring the Cobb-Douglas
production function with labor-augmenting technological progress;

1) Y, =K[A,L]"“ 0<a<l,

where Y is output, K is capital, and L is labor. Population and
technology are assumed to grow exogenously at rate #» and g so
that

(22) Lt = LQ e"t, At = AO egt,

The number of effective units of labor, 4, L;, grows at
rate (n+g). The model assumes that a constant fraction of outputs,
s, 1s invested and capital stock depreciates at the constant rate, &
(>0). In terms of effective units, the production function can be
written as!

23) 3 =Y, /(AL)=(k)"

"1 shall use low case letters to denote per capita variables, e.g.
v;= Y,/L, and » over lower case letters to denote effective measures
(unit per effective worker).
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The evolution over time of the effective capital stock, £, is
given by?2
[ ]

.4) k=53, —(n+g+5)l€t =s.(l€t)a —(n+g+8k,,

where a dot over a variable denotes differentiation with respect to
time and § is the constant rate of depreciation. In steady state,
the effective capital stock is constant and its steady-state value,

%k

k£, is given by3

% The net increase in the stock of capital at a point in time equals gross

investment less depreciation : K={-3K=5Y-5K
If we divide both side of this equation by AL, then we get

K Y K . . ,

LS %L =%k Rewrite Kk/AL, as a function of £ by
using the following condition

. dkjaL) Kk . L 4 A )
k== =L MG P K8 where n=1/1L, g=A/ A,
Substituting this result into the expression for K/ ALand rearranging
terms yield the Eq. (2.4).

A steady state can be defined as a situation in which the various
quantities grow at constant rates. In this model, the steady state

corresponds to £ =0 in Eq. (2.4), that is, to an intersection of the 5.y
curve with the (n+g+0)k line in Figure 3. To see why, divide both

i
sides of Eq. (2.4) by k to get k/k"s'lé_(”+g+§).
The left-hand is constant, by the definition, in the steady state. Since s,
n,8, and & are all constant, it follows that /%4 must be constant in

steady state. The time derivative of J/k is

dr il

The expression of ‘[(37 k3] k] equals the marginal product of an

effective labor and is positive, %/ % must be equal to zero in steady state
as long as k is finite.
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7 S 1/(1- )
(2:3) ko= n+g+ 6 )

Substituting equation (2.5) into the production function, equation
(2.3) and taking logs, we find following expression for steady
state per capita income:

(2.6) In(y}) = InA,;+aln( )

= InA(0) +gt+ l_aa In(s) — 1fa In(n+g+6)

= In(yg) + gt

It is obvious that per capita output in steady state grows at the
constant rate, g.

FIGURE 3. Actual and Break-even Investment
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It is important to know the speed of the transitional
dynamics. If convergence is rapid, then we can focus on
steady-state behavior, because most economies would typically be
close to their steady state. Conversely, if convergence is slow,
then economies would be far from their steady state, and hence,
their growth experiences would be dominated by the transitional
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dynamics. The neoclassical model also implies a speed of
convergence to equilibrium which is determined by the model’s
parameters. From the equation (2.4), the growth rate of k, 4 is
given by

x| X e

@n k= =s.—£——(n+g+5)=s.(l€)_(l_a)—(n+g+5)

Now consider a log-linear approximation of Eq.(2.7) in the
neighborhood of the steady state4;

2.8) 7 =4/ di=-A[nk/E)) where 2=(-a)(n+g+5).
The coefficient A determines the speed of convergence
fromfrom k to £ . For known (n+ g+ 8), estimates of A will
imply a value for @; in particular A=0, no convergence,
implies @ =1, which is inconsistent with the Solow model. The
time it takes to reach equilibrium also depends on the
proportionate distance from steady state, k/k’5 This applies

also to the growth rate of . Since y,= @y, from equation

(2.3), we have In(y/ y)=ecln(® E). Substituting these
formulas into equation (2.8) yields

29 7=—(0-a)nt+g+ts)n(] y),

which has the same form as equation (2.8). That is, the
convergence coefficient, A, for , is the same as that for £

Rewrite Eq.(2.7) in terms of In 2. Note that vk is just the time

derivative of In% and (%)~ can be written exp[ — (1 — @) In £].
The steady-state value of s.(k)-(1-a) equals (n+g+¢J). Now take a

first-order Taylor expansion of In % around In E to get Eq.(2.8).

Note that savings rate, s, does not affect the speed of convergence. This
result reflects two offsetting forces that exactly cancel in the
Cobb-Douglas case. [Refer to Barro and Sala-I-Martin, Economic Growth,

pp37].



10 Journal of Rural Developement 24 (Summer 2001)

Thus the term A indicates how rapidly and economy’s income per

effective worker approaches its steady-state value, 3. For
example, if A= 0.05 per year, then 5 percent of the gap between

3A) and §* vanishes in one year.
Equation (2.9) is a differential equation in In(y,) with the
solution,

(210) Imy(&)=0—en ¥y +e I 5(¢),

where y(#1) is income per effective worker at some initial point of
time and ¢ =(r,—1). Subtracting In y(#) from both sides yields

211D Iny(&)—Inyt)

=(l—e™)n y—(1—e *)n 3(4)

This equation represents a partial adjustment model, the “optimal”
or “target” value of the dependent variables is determined by the
explanatory variables of the current period. In the present case,

y" is determined by s and n, which are assumed to be constant
for the entire intervening time period between f; and #, hence
represent the values for the current year as well. Substituting for

y gives
(2.12) In ¥(t,)—1In 9(#)

=(l—e ") lﬁa In(s) —(1—e™*) lfa’ In(n+g+96)

—(1—e *)In 3(t,)

Thus, in the Solow model the growth of income is a function of
the determinants of the ultimate state and initial level of income.
M-R-W and Islam used this equation to study the process of
convergence across different samples of countries. In M-R-W’s
treatment £, was 1960, and » was 1985, while in Islam those
were 1960 and 1965. They all assumed (g+ &) to be the same
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for all countries and equal to 0.05.
In actual implementation, M-R-W and Islam worked with
income per capita. Note that income per effective labor is

s YY)
@13) yO)=—Z0Tn = L(DA(0)e*

so that

In ()= ln-%/%)l-— InA0)—gt= Iny(#) — In A0) — g,

where y(#) is the per capita income. Substituting for y(#) into the
equation (2-11), we get the usual “growth-initial level” equation;

@-14) In y(t,)—In () =—(1—e )72 ()

—(1—e™*) 1_aa In(n+g+68)—(1—e *)Iny(¢)

+(1—e ™MmAW0) +e(ty,—e )

If we collect terms with Iny(#, ) on the right hand side, we get
the equation in the following form;

(2-15) Iny(t;)

=(l—e™*) lfa In(s) —(1—e™*) l—aa In(n+g+0)

+(e ) Iny+(1—e DI AW0) + gt —e 1)

Now, it can be seen that above equation represents a
dynamic panel model with (1—e¢ *)In A(0) as the time-invariant
individual country-effect term. Note that if countries have
permanent differences in their production functions - that is,
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different A(0)’s - then these A(0)'s would enter as part of the
error term and would be positively correlated with initial income.
Hence, a panel approach can be a proper method for testing for
convergence hypothesis. We may use the following conventional
notation of the panel date literature;

(2-16) y, = YYi—1t glﬁjxft'*' et uitey

where y,=Iny(t),ys1=INt), r=e **

Bi=(1—e 75, B=—U-eITE, xi=h(y),
xh=In(ntg+d), wi=(1—e "IA0). 7,=gt, —e 1),
and g is the transitory error term that varies across countries
and time periods and has mean equal to zero. Panel data
estimation of this equation now provides the kind of environment
necessary to control for the individual country effect.

lli. Dynamic Error Components Model6é

1. The Importance of the Initial Observations in Dynamic
Error Component Model.

One of the main advantages of panel data is that it allows
one to study the dynamics of economic behavior at an individual
level. Unfortunately, when dynamic models are estimated using
time-series of cross sections data, the usual least squares methods
do not lead to consistent estimates for the parameters of the two
most commonly used models for panel data(i.e., the fixed effects
model and error component models).

A Simple dynamic linear model can be written as

° This section is extensively based on the Sevestre and Trognon [1996]
and Nerlove[1996].
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(3'1) Y{t= 7Y,',_1+3Xi,+u,-, 5 l'_"l,N, and t=1,...,T.,

where u; can be decomposed as w,=u+eq If we treat the
individual effects y; as fixed parameters, this model will be the
fixed effects model and if not, this will be the random effect of

error components model. The wusual assumptions on the
disturbance terms are;

(1) The random variables x; and ¢ i are independent for all i
and ¢.

(i1) E( p)=E(€ =0

2 ..
Oe 1=J, =S
E i )= & ,.
(i) E( £uese) [0,0therwzse
0% =1,

(v) EQp; 1)) = { 0, otherwise

(v) X is non-stochastic

Since a panel date set has generally two dimensions, it is
possible to increase the size of the sample and this has two
notable implications on the works with dynamic model such as
(3-1). One is that the stationary assumption (i.e., | y{<l) is not
necessary as long as T is finite and the other is that the
generating process of the initial value Y, must be specified.

-1 . At =1 .

(3-2)7 Yi=7 'Yut ifoy’ BX it —ﬁt’;uﬁ vu where Vi ]il‘oy’ Eiry-
= =

It is clear that the initial observations Y, i=1,2,...N affect the

asymptotic behavior of estimators as long as the time dimension
is finite. That is, if we consider the third or last term in this

7 The u is an autoregressive process with fixed initial values; vi= yvii+ €
if t=1 and 10 if t=0.
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equation (3-2), we know that it does not make sense to assume
that the initial value Y, are not correlated with either x; or Xj.
Thus, let us consider that these initial values depend on the
individual effects x; and on the past of the exogenous variables
Xij, and on a serially uncorrelated disturbance term e o3,

(3-3) Yio=f( Xy, i, €0n0).

Then if the individual effects are fixed, the lagged X’s are given,
then the initial observations are exogenous, since they are
obviously uncorrelated with p ;. But if the individual effects are
assumed to be random, the initial values are no longer exogenous
since they are correlated with x; and y; as they now enter the
disturbance term. Therefore, it is essential to specify the process
of the initial observation correctly in the dynamic error
component model.

2. The Inconsistency of the LSDV (Least Square Dummy
Variable) Estimator.

As Sevestre and Trognon (1996) notes, the autoregressive
fixed effects model cannot be consistently estimated by OLS as
long as T is finite. By Frisch-Waugh theorem, the estimation of
the coefficients ¥ and A in the fixed effects model can be done
by applying OLS to the following transformed model;?

(3-4) Qv=Qy_,+ QBx+ Qe, where Q=IyQXI;—I717/T)

® To assume that these initial observations are fixed and do not depend on
the individual effect is too strong. In that case, they are clearly exogenous
since E[Yio| #i]=0, E[Yiw] v«]=0. But, this assumption is strong as the
date of the beginning of the sample is most often arbitrary and does not
justify such a different treatment of the initial and subsequent
observations.

° Note that Qu=0,where p= [, o, ..., tn]
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Iy denotes the(N X N) identity matrix, @ denotes the Kronecker
product, and /r is (T X 1) unit vector. The, OLS estimators of y
and Scan be written as the Within estimator:

( Z) Y aQy-1 ¥ Qx\ (¥ 1 Qy
G- \ B)=\ & 1Qy-1 5 _1Qx x_1Qy )
since the transformation matrix Q is a symmetric and idempotent.

Dividing by NT and taking probability limits as N—co, holding
T fixed yields

—~

66 Pim( %) <( %)

Plim— ¥ - @1 Plz'm—j-\-}—f Y Qv
Plzm 1 x Qv Plzm X Qv

PlimN—lT v Qe

Plzmﬁ Qe

+

The inconsistency of this estimator depends on the fact
that, given the assumption about the disturbances, one has Plim

——lfx’Qs =0 but
(3-7) Plim ‘1‘\%7 Y _1Qe
= Plim 1= S5 (Vo= Vo) &)

= E(—IT Zt (Yir — Vi) )ew —¢; ))

- 1 T—1—=Ty+y"

where —17'1-._1=—1TZ,Y?,-1, El'z_lfzt:ei" and ¢? is the variance

of ei. Then, as long as T is fixed, the OLS estimator of an
autoregressive fixed effects model is not consistent. This
semi-inconsistency is due to the asymptotic correlation that exists

between ( Yi.i— Y; _,) and (e —Z‘Z-) when N— oo ; though
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Y1 and & are uncorrelated, their respective individual means
are correlated with each other (Sevestre and Trognon (1996),
ppl24). As it is clear from the equation (3-7), when N—co, T—
oo, this estimator is consistent and hence, if the number of time
periods in the sample is large enough, the asymptotic bias of this
estimator is likely to be rather small.

3. The Unconditional Maximum Likelihood

The transition from fixed effects to random effects yields
the error components models. For dynamic models the random
effect creates serial correlation which interacts with the
autoregressive part of the model. When the disturbance is normal,
it is natural to apply the ML principle to the estimation problem.
This was first explored in the seminal paper by Balestra and
Nerlove (1966). At that time they used a conditional likelihood
function in which the initial values were assumed to be fixed.
Such ML estimators are, as Sevestre and Trognon (1996) pointed
out, for wide range of combinations of the parameters, equal to
the OLS estimators and hence they are not consistent. This
important drawback does not occur when the likelihood function
takes into account the density function of the first observations,
i.e., when the likelihood function is unconditional. Provided the
marginal distribution of the initial values Y, i=1,..,N, can be
correctly specified, the unconditional density of Yi,,...., Y, Yi
conditional only on the observed exogenous variables gives rise
to a likelihood function which has an interior maximum with
probability one.(Nerlove[1996]). Thus, the key is a correct
specification of the marginal distribution of the initial observations.

Even though there are various alternative specifications on
the initial observation, for considerable simplification, I assume
that the X is stationary and |¢<l. Under this assumption,
consider the equation (3-2) for initial observation Y, and infinite
past. Then,
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B9 Y= 27Xt mitva,
Where Vir="ViTr—1 + E;T. 10

If B=0, so that the relationship to be estimated is a pure
autoregression for each Y, the vector of initial observations,
Yo=(Yy, ..., Y ) has a joint normal distribution with means 0

and variance -covariance matrix as following;

2 2 2
_ Oy 2 - Ou O¢ 11
Var(¥o) ((1—#*"“)’” ((1—»2+ 1—72)’” ‘

Now, consider when [ is not equal to zero. Let the first term in
the equation (3-9) be ¢, =4 ioy’ X, —; Then, for any stationary
=

processes Xy, which may be serially correlated, the

2
0 xi

£it — 2=l { ¥ has a variance 035:[321—72.‘2 Since the

B B
variance of Xj is assumed to be same for all 7, then the random
variable ¢ ;; has a well defined variance which is the same for all

' From the equation (3-2), taking a particular time period T and the

infinite past gives

Yr=7Y. .+ ;OfBXiT—i+ =7

Since |7 |<1 and yiT= erié‘ir—; is MA form of a first-order
=

autoregression with white noise, the equation (3-9) is derived.

"' Refer to footnote 12.

> Under the assumption that Xit is a white noise but with constant
variance

0%(, the infinite one-sidle moving average {¢it}, where git=

Zo)j X, ;and 20( 7" )2 oo is well defined stationary process with
7= 7=

oo

i+ vir, where v iT = ZIYiE,‘r._,'
=

(=] .
mean zero and variance 20()" )2.
“=
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i and a function of A,7, and 0 . The unconditional likelihood
function!3 is, therefore,

(3-10)
log L(B, 7,0%0%, 621 Y, .., Vir, .. Yur Xu, .. Xurs Yios .., Y mp)

= __._]_VI%)_ log27r-—— log02 _____ logE——j—VK—T-—D- 10g77

1 A 2 __N g} Gi ol
o ZZ(yjt—W—x Jt) - log{ = yz 7)2+ 1—)’2}

>y

=Y
2{—1_£‘i>'7 (liir)z lfirz}

2 2
g o
where p= bo=—4£ t=1-p+To,p=1—0, ¥, x",
o 6ﬁ+0§ ) & 0 0,7 o, ¥y

and yI, are transformed variables and are defined as
yi= TP Y+ (Y= Y, 2= X 7 (X - X0

L5 v,

t=1

_5 1/2 Y__l+77“1/2(yl - 1_1)

Y,
z'-=_1T §X117 11__1T£ ltl'

=1

"> Although I do not review the conditional likelihood function in this
section, its form is;
NT

log L(8,7,0%,02%,|Y, X) =5 log27r— logoz ——— log &
- N(T2—1) log 7~ 210_2 ﬁl };(y,-t—ry-l—ﬁx;z)z
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IV. Data, Samples, and Estimation Results

1. Data and Samples

One of the reasons for the recent surge in work on growth
empirical  analysis has been the availability of the
Summers-Heston (1988) data set. Since the Summers-Heston data
set also includes various measures of the GDP and its
components for different countries over several decades, it is
possible to analyze growth empirics by using a panel approach.
Basically, Islam (1995) as well as Barro (1989) and M-R-W
(1992) used the this data set to construct the variables. The data
comes from the Penn World Tables 5.6, publicly available from
the NBER web site at ftp:/nber.harvard.edu/pub/!4.Since [ want
to compare my estimation results with those obtained by Islam, I
kept the country samples similar to those used by him. The three
samples that Islam considered were (i) NONOIL (96 countries),
(1) INTER (74 countries), and (iii) OECD (22 countries)!3. The
counties are listed in the Appendix 1. The value of (g+¢J) is
assumed to be constant as 0.05 and same for all countries and
for all years!6, Five-year time interval data like Islam were used
for the estimation of model and so considering the period
1960-1985, five data points for each country; 1985, 80, 75, 70,
and 1960. When {=1965, for example, (#— 1) denotes 1960,
and savings rate and population growth rate are an average value
of five years. Finally all econometric results are calculated by

' PWTS5.6. is most recent version of Summers-Heston data.

' NONOIL means countries that oil production is not the dominant
industry. Actually we can not expect standard growth model to account
for measured GDP in these countries. INTER are countries whose data
receive a grade of “D” from Summers and Heston or whose populations
in 1960 were less than one million. Summers and Heston use the “D”
grade to identify countries whose real income figures are based on
extremely little primary data. Third sample consists of the 22 OECD
countries with populations greater than one million.

' This assumption follows M-R-W and Islam’s assumption.
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using the GAUSS 3.02.

2. Estimation Results

2.1. Single Cross-section Results

To see how much results of this paper differ from those of Islam
and M-R-W, single cross-section regressions were first run. For
this regression y; is the log of per capita GDP for 1985 and yi.,
same for 1960. s and n are averages of savings and population
growth rate for 1960-1985. Table 1 includes these results. The
first panel of the table denotes results of estimation in
unrestricted form, while the second panel contains restricted case
which the coefficient of the investment and population growth
variables are equal in magnitude but opposite signl7. All
estimates are very similar in each case except constant term.

In the comparison with Islam and M-R-W, the estimates
of initial GDP for three subsample are -0.168. -0.212, and -0.318,
respectively. Corresponding estimates of Islam and M-R-W are
-0.127, -0.218, -0.328 and -0.141, -0.228, -0.351. Also for
estimates of A my results are 0.0073, 0.0095, and 0.0153,
respectively, while those of Islam and M-R-W are 0.0054,
0.0098, 0.0159 and 0.0061, 0.0104, 0.0173.

In general, the results from restricted estimation allow us
unique estimates of A and @ and these results show a very
slow rate of convergence. On the other hand, the estimates of «,
implying an elasticity of output with respect to capital, are
unusually high in each case because these estimates imply such a
high capital share.

2.2. Pooled Estimation

Next, a pooled regression (OLS) is implemented on the basis of
our five-year span data is implemented. The Table 2 reports these
results. Because of differences in the value of 7, the reduced

"7 Such restriction on the coefficients of In(s) and In (n+ g+ &)is derived
from the assumption of the constant returns to scale.
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form coefficients are not directly comparable to single
cross-section results. Therefore, consider the implied values of the
structural parameters. The values of A from the unrestricted
pooled estimation are 0.0105, 0.0128, and 0.0243 for NONOIL,
INTER, and OECD. Unlike Islam’'s result, these are different
from the corresponding- estimates in Table 1. While the implied
values of @ are very similar in two regressions, these results,
still, show very low estimates of the rate of convergence and
relatively high estimates of the elasticity parameter «; 0.708 for
NONGOIL sample, 0.690 for INTER, and 0.607 for OECD.

2.3. LSDV Estimation with Fixed Effects

The result of the LSDV estimation is presented in Table 3. The
implied rates of convergence and output elasticity for NONOIL,
INTER, and OECD samples are 0.0660, 0.0597, 0.0537, and
0.3719, 0.4122, 0.4096, respectively!8. These are very different
from the previous corresponding estimates and relatively high as
before two regressions. Therefore, the adoption of the panel
approach leads to a two-fold change in the results. First, we
obtain much higher rates of the convergence, and second, we
obtain more empirically plausible estimates of the elasticity of
output with respect to capital. However, as we have seen, these
estimates are not consistent.

2.4. Feasible GLS and ML Estimation

In order to compare various estimates based on different
assumptions, a feasible GLS with a random effects is run and is
used for starting values for conditional and unconditional
maximum likelihood estimates. The results report Table 4 and
Table 5. In the process of FGLS, Nerlove (1971)’s method!? is
applied for the calculation of rho o, that is intra-correlation

'® These results are almost same to that of Islam.

' Actually, there are three alternatives in calculation of the estimates
intra-correlation coefficient; Nerlove (1971) estimate, Balestra and
Nerlove estimate, and Green-Jurge estimate. These provide different
value of o .Refer to Nerlove[1996]
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coefficient. A sample variance of X is replaced for ¢% in

obtaining he unconditional maximum likelihood estimators.

The implied rates of convergence and output elasticity for
NONOIL, INTER, and OECD samples are 0.0402, 0.0394,
0.0462, and 0.4966, 0.5157, 0.4718 in the FGLS. In the case of
unconditional ML, these are 0.0127, 0.0151, 0.0425 and 0.6846,
0.6713, 0.4865, respectively. Note that considering the downward
bias in the coefficient of the lagged dependent variable in a
dynamic fixed effects model suggest that other coefficients will
be biased upwards.

V. Conclusion

We have seen in Section II that the speed of convergence to
equilibrium is proportional to the value of A, and so 7. The

relationship between Aand 7 is given by /1=———{_ In(y).20 Thus,

a higher value of 7 leads to a lower value of A, implying a
slow speed of convergence. Table 6 shows that relationships
between A and the 7', which means the time period required for
convergence to equilibrium.2!

As Islam notes, higher rate of convergence over the whole
sample can be obtained by adoption of a panel data approach,
which allows for difference in the aggregate production function
not only across groups of countries but also across individual
countries. This is obviously good news for the Solow model.
However, his LSDV approach with fixed effect's model has an
incline to increase the estimate of the speed of convergence. The
unconditional ML estimator of lambda shows it clear.

Even though we do not consider the fact that the estimator
of the coefficient of the lagged variable in the dynamic fixed

* Note that 7 is (t-—t;) and so constant.

! Note that our data is consist of S-year span for 1965, 70, 75, 80, and
1985.
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effects model ¥, biases to downward, so the estimates of A is
overestimated, it hardly seems to say that there exists a
reasonable evidence of rapid convergence if we see the time
period required for the convergence.

TABLE 1. Single Cross-Section Results, 1960-85
Coefficient NONOIL  INTER OECD NONOIL INTER OECD

Islam’s Results This Paper

Unrestricted

Constant 09448 11075 17433 08885 12196  2.6793
(0.8724)  (0.8975)  (1.2655)  (0.8163)  (0.8412)  (1.0877)
In(y60) 08733 07822 06722 08119 07689  0.6849
0.0611) (0.0667)  (0.0694)  (0.0607) ~ (0.0625)  (0.0571)
In(s) 06585 06431 04114 04980 05221  0.6694

0.0926)  (0.1121)  (0.1845)  (0.0622)  (0.0819)  (0.1900)
In(ntgd) 06122 -0.8144 08021  -0.7481 07718  -0.5791
03667)  (0.3717)  (0.4187)  (03563)  (0.3555)  (0.3521)
R-square* 09006  0.8915 08499 09051 ~ 09024  0.8917

Lambda 0.0054 0.0098 0.0159 0.0083 0.0105 0.0151
(0.0004)  (0.0008)  (0.0016)  (0.0030)  (0.0033 (0.0033)
Restricted
Constant 0.8475 1.4565 2.6689 1.3921 1.7265 2.4758
(0.3429)  (0.3798)  (0.5715)  (0.3632)  (0.3778)  (0.5001)
In(y60) 0.8701 0.7945 0.6817 0.8328 0.7882 0.6827
(0.0547)  (0.0599)  (0.0678) (0.0524)  (0.0553)  (0.0547)
In(z) 0.6554 0.6610 0.4847 0.5061 0.5378 0.6461

(0.0884)  (0.1034)  (0.1602)  (0.0609)  (0.0782)  (0.1511)
R-square 09037 08927 08524 09057 09032  0.8972

Lambda 0.0056  0.0092 00153 00073 00095  0.0153
(0.0004)  (0.0007)  (0.0015)  (0.0025)  (0.0028)  (0.0032)
Alpha 08346 07628 06036 07517 07175  0.6706

0.1126)  (0.1193)  (0.1995)  (0.0225)  (0.0295)  (0.0517)

Figures in parentheses are standard errors and In(z) denotes In(s)-In(ntg+d)
and R-square represents adjusted R-square.
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TABLE 2. POOLED REGRESSION RESULTS OF 5-YEAR SPAN DATA
Coefficient NONOIL INTER  OECD NONOIL INTER OECD

[slam’s Results This Paper
Unrestricted
In(y-1) 0.9764 0.9636 0.9228 0.9490 0.9385 0.8892
(0.0101)  (0.0107)  (0.0147)  (0.0091)  (0.0091)  (0.0131)
In(s) 0.1386 0.1396 0.1047 0.1255 0.1440 0.1934

©.0153)  (0.1172)  (0.0313)  (0.0114)  (0.0139)  (0.0350)
In(ntg+d)  -0.1291 01300  -0.1799  -0.1150  -0.1070  -0.1183
(0.0584)  (0.0566)  (0.0653)  (0.0319)  (0.0295)  (0.0626)
R-square* 09848 09861 09807 09817 09839  0.979%

Lambda 0.0048 0.0074 0.0161 0.0105 0.0127 0.0235
(0.0001)  (0.0001)  (0.0003) (0.0019) (0.0019)  (0.0029)

Restricted
In(y-1) 0.9758 0.9628 0.9248 0.9487 0.9382 0.8857
(0.0012)  (0.0098) (0.0147) (0.0091)  (0.0091) (0.0127)
In(z) 0.1381 0.1388 0.1184 0.1244 0.1374 0.1764

(0.0151)  (0.0165)  (0.0286)  (0.0108)  (0.0126)  (0.0313)
R-square 09848 09861 09901 09817 09839  0.9795

Lambda 00059 00095 00146 00105 00128 00243
(0.0001)  (0.0002)  (0.0002) (0.0019)  (0.0019)  (0.0029)
Alpha 08338 07736 06150 07080  0.6897  0.6067

(0.0912)  (0.0924) (0.1486) (0.0179)  (0.0197)  (0.0423)

Figures in parentheses are standard errirs and In(z) denotes In(s)-In(n+gtd)
and R-square represents adjusted R-square.
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TABLE 3. LL.SDV Estimation with Fixed Effects Model
Coefficient NONOIL  INTER OECD NONOIL INTER OECD
Islam’s Results This Paper

Unrestricted

In(y-1) 0.7762 0.7935 0.5864 0.7127 0.7272 0.7636
(0.0353)  (0.0388)  (0.0532) (0.0235)  (0.0211)  (0.0203)
In(s) 0.1595 0.1709 0.1215 0.2090 0.2686 0.1617

(0.0237)  (0.0256)  (0.0586)  (0.0230)  (0.0251)  (0.0660)

In(n+g+d)  -0.4092  -02466  -0.0698  -00753  -00687  -0.1713
©(0.1024)  (0.1007)  (0.1007)  (0.0329)  (0.0283)  (0.0912)

R-square 07404 08254 09659 09900 09920  0.9900

Lambda 0.0507 0.0462 0.1067 0.0677 0.0637 0.0539
(0.0091)  (0.0098) (0.0181)  (0.0066)  (0.0058)  (0.0053)

Restricted
In(y-1) 0.7919 0.7954 0.6294 0.7204 0.7419 0.7645
(0.0349)  (0.0387)  (0.0495) (0.0237)  (0.0219)  (0.0187)
In(z) 0.1634 0.1726 0.0954 0.1656 0.1809 0.1634

(0.0238)  (0.0254)  (0.0581)  (0.0193)  (0.0198)  (0.0577)
R-square 0.7368 0.8251 0.9642 0.9890 0.9910 0.9900

Lambda 0.0467 0.0458 0.0926 0.0660 0.0597 0.0537
(0.0088)  (0.0097)  (0.0157) (0.0066)  (0.0059)  (0.0049)
Alpha 0.4398 0.4575 0.2047 0.3719 04122 0.4096

(0.0545)  (0.0575)  (0.1042)  (0.0312)  (0.0471)  (0.0886)

TABLE 4. Feasible GLS Estimation with Random Effects Model

CoefTicient NONOIL INTER OECD

In(y-1) 0.8179 0.8212 0.7939
(0.0174) (0.0165) (0.0166)

In(z) 0.1796 0.1904 0.1841
(0.0166) (0.0175) (0.0481)

R-square 0.8700 0.9020 0.9560
Lambda 0.04021 0.03940 0.04617
(0.00425) (0.00403) (0.00418)

Alpha 0.49656 0.51565 047179
(0.02636) (0.02632) (0.06788)

Figures in parentheses are standard errors and In(z) denotes In(s)-In(n+g+d).
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TABLE 5. Conditional and Unconditional ML Estimates
Coefficient NONOIL  INTER OECD NONOIL INTER OECD
Conditional MLE Unconditional MLE

In(y-1) 0.9339 0.9156 0.8189 0.9385 0.9271 0.8085
(0.0122)  (0.0135)  (0.0245) (0.0105) (0.0118)  (0.0228)

In(z) 0.1370 0.1580 0.1908 0.1334 0.1488 0.1815
(0.0131)  (0.0158)  (0.0438) (0.0124) (0.0154) (0.0521)

Lambda 0.0137 0.0176 0.0400 0.0127 0.0151 0.0425
(0.0026)  (0.0053)  (0.0060) (0.0022) (0.0025)  (0.0056)

Alpha 0.6744 0.6518 0.5131 0.6846 0.6713 0.4865
(0.0289)  (0.0909) (0.0664) (0.0277) (0.0276)  (0.0791)

Figures in parentheses are standard errors and In(z) denotes In(s)-In(n+g+d).

TABLE 6. The Speed of Convergence
ol NONOIL INTER OECD
Estimation Method
A T A T A T

Pooled Estimation 0105 331.8 0128 2725 0243 144.3
Fixed Effects Model 0660 542  .0597 59.8 0537 66.3
Feasible GLS .0402 879  .039%4 89.7 0462 76.7
Unconditional MLE 0127 2746 0151 231.2 0425 833

The Unit of T is year.

Annex 1. Countries used in this study.

OECD(22):

INTER(74):

Japan, Austria, Belgium, Denmark, Finland, France,
Germany(FRG), Greece, Ireland, Italy, Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland,
Turkey, U.K., Canada, U.S., New Zealand

OECD 22 Countries + Algeria, Botswana, Cameroon,
Ethiopia, Ivory Coast, Kenya, Madagascar, Malawi,
Mali, Morocco, Nigeria, Senegal, South Africa,
Tanzania, @ Zambia, Zimbabwe, Costa  Rica,
Dominican Rep., El Salvador, Guatemala, Haiti,
Honduras, Jamaica, Mexico, Nicaragua, Panama,
Trinidad & Tobogo, Argentina, Bolivia, Chile,
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Colombia, Ecuador, Paraguay, Peru,Uruguay,
Venezuela, Bangladesh, Hong Kong, India, Israel,
Jordan, Korea, Malaysia, Burma, Pakistan,
Philippines, Singapore, Sri Lanka, Syria, Thailand

NONOIL(94): INTER(74) + Angola, Benin, Burundi, Central
African Rep., Chad, Congo, Egypt, Ghana, Liberia,
Mauritania, = Mauritius, = Mozambique,  Niger,
Rwanda, Somalia, Togo, Uganda, Zaire, Nepal,
Papua New Guinea
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