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ABSTRACT

Early studies of . the productivity of pesticide expenditures
determined a very high marginal product. The marginal
product of control will depend upon the level of the particular
pesticide, the host crop, initial pest infestation, other state
variables, and the functional form., The excessively high
marginal product of generic pesticide expenditures estimated
in some earlier studies are not evident in our analysis of crop
and herbicide specific experimental data. Field-level data for
winter wheat in south eastern Washington indicate increasing
returns to herbicide application are unlikely to occur in typical
field application.

l. Introduction

The marginal product of pesticides, the primary damage control
input in agriculture, has implications for privately optimal
pesticide use and potential environmental risks. If the private
marginal product of pesticide is increasing over a substantial
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range, optimal private usage could be much higher than current
label recommendations. Also, application rates exceeding label
rates may not be environmentally safe.

Economists have been frustrated by a number of
specification and data issues in measuring the productivity of
agricultural pesticides. Geographical and product aggregated
pesticide expenditure data have been used to determine the
marginal productivity of pesticides, because the cost of the data
is low, the data are available, and the regional generality of
results may be greater (Campbell 1976; Carrasco-Tauber and
Moffitt 1992; Chambers and Lichtenberg 1994; Headley 1968;
Saha, Shumway and Havenner 1997). Policy implications from
analysis of aggregate pesticide expenditures though can not take
into account the registration process of the Environmental
Protection Agency that targets particular pesticides use rates, and
specific uses (Schierow 2000).

Early studies of the productivity of pesticide expenditures
determined a very high marginal product, indicating that
producers under apply pesticides (Headley 1968; Campbell 1976).
Lichtenberg and Zilberman (LZ) specify a recursive homothetic
separable model that eliminates an upward bias present in the
earlier studies. The model follows the established approach used
in the pest control sciences for herbicide efficacy (Roberts and
Wilson 1961) and yield response to the pests (Cousens 1985;
Stern et al. 1959; Talpaz and Frisbie), where: (a) the pesticide
reduces the pest population (the “dose response” in biology); and
(b) the surviving pest population damages crop yield. The LZ
model specifies yield (Q) as a function of a vector of directly
productive inputs (Z) and a damage abatement or control function
(G(X)), which is a function of the damage control input vector (X):

() Q=F[Z,G(X)]

A dual specification of equation (1) using U.S. aggregate
time-series data on pesticide expenditures developed by Chambers
and Lichtenberg rejected the conventional input specification of
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Headley and accepted the LZ specification. Saha, Shumway, and
Havenner employed alternative stochastic specifications using
farm-level data on total pesticide expenditures. They concluded
proper specification of the stochastic element of the production
function precluded overestimating the marginal productivity of
pesticide expenditures.

Intrinsic increasing returns to pesticides due to functional
form selection is a possible explanation for the high marginal
product of pesticide estimates of early empirical studies and some
conflicting results with the LZ model (Carrasco-Tauber and
Moffitt). Fox and Weersink showed that increasing returns are
possible under specific conditions using various functional forms
for damage and control functions, but none were tested with
empirically estimated parameters and observed variable values.
Concavity of the damage and control functions in equation (1) is
not sufficient to prevent increasing returns to damage control
inputs. Hennessy developed global conditions for the damage and
control functions that assure concavity of the production function
in a damage control input.

Models for managerial decision making require greater
detail than aggregate pesticide expenditures models can provide.
Managers require refined decision rules for application of
particular pesticides on specific crops conditional on pests, pest
densities, crop, soil moisture conditions, and other state variables
(King et al. 1993; Marra and Carlson; Mortensen and Coble;
Swinton and King, 1994a, 1994b; Talpaz and Frisbie 1975;
Weersink, Deen and Weaver 1991). The biology of dose response
(Seefeldt, Jensen and Fuerst 1995), threshold analysis (Stern et
al.), weed competition (Black and Dyson 1993; Cousens), and
economic optimization requires specific pesticide, crop and field
information.

Parallel with the aggregate approaches, there has been a
history of biologically precise pest control economics based on
pesticide and crop specific field experimental data (Pannel 1990;
King et al. 1986; Ethridge et al. 1990; Swinton and King 1994b;
Lybecker, Schweizer and King 1986; Kwon et al. 1998). The
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bioeconomic modelling in this paper has been the product of
interdisciplinary cooperation between economists and biological
scientists. Optimal interior solutions for the analytical model
indicate concavity in the damage control input, but this could
have been the result of the specific functional forms (Pannel
1990; Kwon et al.). Dynamic models are generally appropriate for
insects, but the cost of collecting soil seed bank data is often too
costly for dynamic weed control decision models (King et al.
1986). Multiple weed types have been included in some models
(Kwon et al.; Lybecker, Schweizer, and King; Swinton et al. 1994).

The bioeconomic models described above provide a
sharper instrument to examine impacts of realistic policies
because they examine the impacts of specific herbicides that
might be regulated on specific crops for which the herbicides are
legally registered and technically feasible. The bioeconomic
approach avoids using aggregate pesticide expenditures that have
been aggregated across geographic areas and pesticide products.
Furthermore, the bioeconomic models maintain a closer fit to the
biological logic underlying equation (1); consequently, they
provide a less ambiguous means of testing for increasing returns
to pesticide rates over realistic data ranges for particular
pesticides and crops.

The objective of this study is to determine whether
empirical field evidence of pest control supports the contention of
increasing returns, or increasing marginal productivity, to
pesticide application, or whether returns are decreasing. Like most
bioeconomic studies, the approach of estimating separate pest
survival (control) and yield damage functions is employed. We
use field-level experimental data to estimate negative exponential
herbicide-specific weed survival functions and winter wheat yield
damage functions based on seven different functional forms.
Where concavity of the production and profit function with
respect to herbicide rate is restricted to certain weed densities or
other state variable levels, the levels will be evaluated to
determine if they are within values observed in the field or
whether concavity is the result of extrapolating beyond the data
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used in estimation. Field data permit specification of pest
densities, soil properties, and ancillary management practices that
are critical to precise pest control recommendations.

Model and Data

Model

The model used in this study is a modified version of the LZ
model in equation 1. Weed survival is estimated and then used in
the estimation of crop yield. The density of weeds surviving
following herbicide treatment is more important in determining
yield damage than the proportion of weeds remaining. A subset
of production inputs, specifically crop rotation and tillage
practice, enter both the weed survival and the yield functions.
Crop rotation and tillage practice are assumed separable from the
herbicide effects.

Weed Survival

Weed numbers per unit area (m®) surviving herbicide application
are G(X), as in the process model by Blackwell and Pagoulatos.
Control as a proportion is central to biologists computing efficacy
of a dose, but actual weed density is required to properly
estimate crop yield damage. The weed survival model for three
weed types is specified as:

b,

(2) DS;= SWD,e """ +d;DHy+ X auTIL,+ ﬁ CmCR,+e; i=1,2,3
=1 m=1]

where DS; is the surviving weed density (plants/m®) at mid-summer;
SwD,e” %™ is the selected negative exponential functional form
for weed survival; SWD; is the weed seedling density (plants/m®)
in the .spring prior to postemergence herbicide application; (i=1
for summer annual grasses, ;=2 for winter annual grasses, and

i=3 for broadleaves); H; is the category of herbicide (=B for post
emergence broadleaf, and j=G for post emergence summer and
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winter annual grasses), j=B when /=3 and j=G when =1 or 2;
DHy is a binary variable equal to 1 when a nonselective
herbicide was applied prior to fall planting of winter wheatl,
otherwise zero; TIL; are binary variables for the tillage practice
compared to moldboard plow (77L/=1 for no-till, TIL,=1 for
chisel plow, otherwise zero); CR, are binary variables for the
crop preceding winter wheat compared to winter wheat (CR;=1
for spring wheat, CR,=1 for spring pea, otherwise zero); b, d,
ai, and c;, are parameters to be estimated; and e is the error
term. Especially important in this study is b;, the coefficient
showing the control of weed type i by the herbicide ;. We
assumed an additive effect of tillage and crop rotation on
surviving weed densities. We found no evidence in the literature
that crop rotation had a multiplicative influence on the control of
weeds present in winter wheat at the time of herbicide
application. We selected the negative exponential functional form
for weed survival based on its good fit to the data, the sensitivity
of its marginal dose response to both dose rate and preexisting
weed densities, and its popularity in the weed science literature
(Feder 1979; Kwon et al.; Moffit, Hall and Osteen 1984).2

The three weed group equations will not be independent
because a weed group not only competes with the crop, but also
competes with other weed groups in a given year. While each
weed type within a plot competes with other types annually, the
weed types do not compete across plots. The error components
across equations are therefore assumed to be contemporaneously
correlated; however, the errors across observations are assumed to
be uncorrelated. The seemingly unrelated regression technique is
used to accommodate for the absence of independence among the

" Early fall application of nonselective herbicide occurs only when
sufficient rainfall generates a “flush” of weeds prior to seeding winter
wheat.

? Other estimated functional forms for weed survival were deemed
unsuitable. Linear and square root functions had low significance and a
low R? logistic had theoretically incorrect signs, and the rectangular
hyperbolic did not converge.
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three weed survival equations(Judge et al. 1988).

For the negative e/)\(ponential survival functions, the
coefficients bij should be positive for the herbicides specific to
control of the appropriate weed category, zero otherwise. Higher
rates of the appropriate herbicide, H, should reduce the surviving
weed population. The expected sign of d; is negative because
treatment of weeds prior to seeding should reduce weed
population the next summer. The sign for ai should be negative
because conservation tillage in the area of study tends to increase
weed competition in winter wheat relative to plowing (Young et
al. 1994). No prior sign, based on available research, could be
assigned to Cim.

Yield and Damage Control

A modification to the LZ model in this analysis is the inclusion
of site specific variables in both the weed survival and yield
functions (Saha, Shumway and Havenner 1997). Yield, Q, is
modelled as a function of weed-free yield, the yield damage
function caused by weed competition, tillage system, and crop
rotation. A Mitscherlich-Baule form was specified for the
weed-free yield because it has been found to be superior to
quadratic and linear von Liebig forms for showing the
relationship between crop yield and biophysical conditions (Frank,
Beattiec and Embleton 1990). The functional form of the
weed-free yield estimation should have a relatively small impact
on the yield damage function estimate, and therefore the
emphasis in this study is placed on the functional form of the
yield damage function. The yield function is specified as:

() Q=s,(1—e " SM)(1—e M) [ THS]+ g} 4y TIL, + mf;:l 0, CRy + &

where the terms before the square bracket models weed-free yield
of the benchmark winter wheat system; SM is percent soil
moisture at April 1; and OM is percent soil organic matter. The
S’s are estimated parameters. The g(-) function is the yield
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damage function, where 7T#s is the estimated total weighted
weed survival prior to harvest of the three weed categories
estimated by the weed survival function. Seven functional forms
are estimated for g(TWS): logistic, rectangular hyperbolic,
exponential,3 Weibull, Pareto, linear and square root (Table 1).
The general properties of the functions are reported in Fox and
Weersink.

The survival and yield equations were estimated with
SHAZAM (White). Convergence for the nonlinear models is not
guaranteed for any given set of starting values. Though a global
optimum is not assured, solved models were reestimated with
different starting points to give high probability to identifying the
optimum. Two measures of goodness of fit were used to select
the yield responses reported: the log-likelihood function and the

TABLE 1. Yield Damage Functions®

Logistic 1- T:e‘rffm
1— n) WS
Rectangular Hyperbola 100(1 - ( n ;‘)WS))
Exponential e T
Weibull e~ ™"
K 1"
Pareto [ TWS]
" Linear 1—n, TWS
Square Root 1—nV THS

® TWS is total weed survival, ¢ and K are constants, and n, and n;, are
parameters to be estimated.

* For distinction, the (negative) exponential yield damage function is
referred to as an “exponential” function and the negative exponential
weed survival function is referred to as a “negative exponential”
function.
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maximum likelihood estimate (MLE) of o2 and a calculated R?
is also reported.

Data

Production and weed control data for winter wheat from a
1986-91 field experiment in southeastern Washington provides an
opportunity to test alternative yield damage functions to
determine whether increasing returns to pesticides are evident at a
given field level (Young et al.). The experiment had two crop
rotations: winter wheat-winter wheat-spring wheat; and winter
wheat-spring barley-spring pea. Conventional and conservation
tillage plus three levels of weed management (minimum,
moderate, and maximum) were imposed across the two crop
rotations. There were effectively 18 winter wheat treatments (3
rotation sequence positions for winter wheat, 2 tillage practices,
and 3 weed control levels). All rotational positions of a crop
were grown each year. With four replicates, the time series and
cross sectional data provided 432 observations (Young et al.).

Weed species were grouped into summer annual grasses,
winter annual grasses, and broadleaves because growth patterns
and weed competition are similar across these broad groups.
Several herbicides were used over the six years, with types and
rates relative to label rates changing with the treatment and
weeds present. Because of the numerous herbicides used, the
application rate was expressed as a proportion of the label rate.
Herbicides were grouped into three subgroups: nonselective
preplant (control all plant growth); postemergence grass (control
summer and winter annual grasses); and postemergence broadleaf.
Major site-specific determinants of plot wheat yields were soil
organic matter and soil moisture, as well as surviving weed
density, tillage system, and crop rotation.

Results

The estimates of the negative exponential weed survival equations
for the three weed types are reported in Table 2. The calculated
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pseudo R® values, while relatively low, are reasonable for cross
sectional data of this type. Postemergence grass (Hg) and
broadleaf (Hg) herbicides significantly reduced weed survival of
grasses and broadleaves, respectively, for this data set. At the
label rate for broadleaves (Hg=1), broadleaf control was 93%
(1-e**”). The lower estimated coefficient for summer annual
grasses reflects later weed flushes, primarily wild oats, that often

TABLE 2. Estimated coefficients of the negative exponential weed survival
functions for three weed subgroups in winter wheat using

seemingly unrelated regression.

Variable® DS, DS, DS;
b 2.659
Hy (35.20)°
" 0.670 2.986
g (6.75) (20.34)
-2.451 0.560 -7.050
D (-0.43) ©.11) (431)
TIL 13.267 9.325 9.640
! (3.05) (2.46) (7.24)
TIL 18.778 16.269 2.770
2 (4.25) (4.16) (2.37)
Calculated pseudo R 0.35 0.28 0.36
Log-likelihood function -6080.93
Number of observations 432

a

Hg = postemergence broadleaf herbicide, Hg = postemergence grass herbicide,
DHN =discrete variable for preplant nonselective herbicide (DHn=1 for
application, DHx = 0 for no application), TIL; = discrete variables for tillage
(TIL; =1 and TIL;=0 for no-till, TIL, =0 and TIL>=1 for chisel plow,
otherwise TIL;=TIL,=0 for moldboard plow.). Weeds (plants/m’) were
categorized as summer annual grasses (DS;), winter annual grasses (DS),
and broadleaves (DS;).

Blank entries indicate that the variable was excluded because it was not
relevant to the particular weed type.

t-statistics are in parentheses.
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occur after spring herbicide application in this region. Indeed,
control of all weeds present during spring control was higher
than weed counts prior to harvest would indicate because of
post-application weed flushes. Nonselective glyphosate herbicide
(DHyn) reduced broadleaves but did not have a statistically
significant effect on grasses. Soil conserving no-till (TIL;) and
chisel plow (TIL>) tillage systems resulted in significantly higher
weed survival prior to harvest than moldboard plowing, but chisel
plowing increased broadleaf weed density by less than 3
plants/m’. Weed flushes following application of herbicides were
more frequent with reduced tillage systems. The preceding crop
was not included in the final estimate of weed survival because
all these variables were highly insignificant with coefficient
values usually less than one. There was little effect on the
remaining estimated coefficients, on the log-likelihood function,
and on the calculated pseudo R’ values from excluding the
preceding crop variables.

Grass and broadleaf weeds present prior to harvest were
aggregated into 7WS based on biomass. Estimating yield damage
with TWS, rather than with each of the three weed categories,
simplifies estimation and interpretation without loss of information
on total weed competitiveness. TWS includes weeds surviving
control plus those emerging after control. Biomass indicates the
competitiveness of the weed categories for nutrients and moisture.
Estimated total weighted weed survival is specified as:

(4) TWS=0.92(DS;)+1.0(DS,)+0.47(DS5)

where the variables are as previously defined and the “(hat)
indicates a predicted value. A competition index of 1.0 was
assigned to winter annual grasses and the weights assigned to
summer annual grasses and broadleaves were proportional to the
frequency weighted average biomass of winter annual grasses.
The weight of 0.47 for broadleaves indicates a broadleaf weed is
about one-half as competitive as a grass weed.
Yield damage equations were estimated using the seven
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functional forms in Table 1 with the results reported in Table 3.
Variable definitions are in equations (2) and (3), and in Table 1.
Log-likelihood, MLE of ¢? and calculated R® values are similar
across all seven equations. The coefficients showing influence of
soil properties on weed free yield (s;, s2, and s3) are all highly
significant as expected. Spring soil moisture and soil organic
matter are primary determinants of site productivity in this
dryland farming region. Tillage (u; and u;) and preceding crop
(v: and vy) significantly affected crop yield. Conservation tillage
and rotating winter wheat with spring wheat and especially the
legume spring peas, increased winter wheat yield. The
coefficients (np and »; in Table 1) for the yield damage function
due to weeds are significant for all cases. All variables have
expected signs based on agronomic principles. Increased total
weighted weed survival depresses winter wheat yield. Note the
Weibull function reduces to a constant and the Pareto function is
undefined if TWS equals zero. Our experimental site, like most
fields, did not contain observations with zero weed density.

The estimated equations for weed survival and yield
damage are checked for increasing returns to herbicide rates over
observed weed densities and herbicide rates. The negative
exponential weed survival is combined with seven yield damage
functions. Two approaches of direct examination are used to
determine concavity of production in the control for the
estimates. The first is the rule specified by Hennessy where the
ratio of the second to the first derivative of the inverse survival
function with respect to the pest must be less than the ratio of
the second to the first derivative of the damage function with
respect to the pest. The second approach is direct evaluation of
the second order derivatives for production with respect to
herbicide rate.

Hennessy's rule for global concavity held for the estimated
linear and square root yield damage functions when combined
with the estimated negative exponential weed survival function.
For the estimated Pareto and Weibull yield damage functions
with the negative exponential weed survival function, yield with
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TABLE 3. Estimated Coefficients of Yield Damage Response Functions
for Selected Models. Exponential

. oa . .. | Rectangutar | Exponen . . Square-
Variable® | Logistic Hyperbolic | -tial Weibull | Pareto | Linear root
ntercen | 97764 | 97.872 | 93879 | 24361 | 90678 | 91762 | 99.346

PU L as00p | (1669) | (19.12) | (21.87) | (23.58) | (21.35) | (17.54)
- 0201 | 0200 | 0199 | 0.199 | 0.197 | 0.197 | 0.202

(10.95) | (10.95) | (10.98) | (10.62) | (10.80) | (11.62) | (10.87)
oM 0.838 | 0826 | 0892 | 1095 | 1133 | 0988 | 0.854
(455 | (460) | (4.58) | (379 | (3.98) | (445) | ( 4.54)
TWS () | 0089 | 1095 100041 | 0.028 | 00224 | 0.0022 | 0039
Dl (244) | (313) | (512) | ( 405) | (3.69) | ( 663) | ( 9.01)
2780 | 68.127
TWS (o) | 203) | (5.55)
] 20704 | 22525 | 17.294 | 15561 | 14374 | 14534 | 20918
(856) | (7.49) | (7.53) { ( 643) | (624) | ( 698) | ( 9.16)
2 15412 | 16021 | 9418 | 3962 | 2315 | 4327 | 13.252
(480 | (432) | (3.06) | (1351 (0.83) | ( 1.78) | ( 4.60)
., 9319 | 9791 | 9688 | 8958 | 8.848 | 9313 | 9.700
(4.19) | (440) | (426) | (373) | (3.67) | (411) | ( 4.51)
CR2 25844 | 26533 | 25453 | 24.057 | 23.693 | 24278 | 26.092
(11.52) | (11.74) | (11.38) | (1026) | (10.22) | (11.08) | (12.22)
gf‘lcu'ated 053 | 054 | 053 | 049 | 049 | 052 | 0.54
Log-
ok g | 1818 [ <1817 | 1821 | (1838 | -1840 | -1825 | -1816
MLE of o?| 2653 | 2637 | 2687 | 2911 | 293.0 | 2736 | 263.3

® SM=soil moisture, OM = organic matter, TWS =total weed survival (no
and n, are defined in Table 1 for each of the functions), TIL¢ is a
discrete variable for tillage (TIL,=1 and TIL = 0 for no-till, TIL,=0
and TIL;=1 for chisel plow, otherwise TIL;=TIL,=0 for moldboard
plow), and CRy, is a discrete variable for preceding crop (CR;=1 and
CR;=0 for spring wheat, CR; =0 and CR;=1 for spring pea, otherwise

N CR; =CR;=0 for winter wheat).
t-statistics are in the parentheses. . .

respect to herbicide rate was everywhere convex in the positive

quadrant and very close to linear. Yield responses with estimated
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rectangular hyperbolic, logistic, and exponential yield damage
functions with the negative exponential weed survival function
are neither strictly concave nor convex with respect to herbicide
rate. These three yield response functions are concave at low
surviving weed levels and higher herbicide rates, and convex at
high surviving weed levels and low herbicide rates. The changing
concavity for these three functions was confirmed using both
Hennessy's rule and by direct evaluation of the second order
derivatives of yield with respect to herbicide rate. The properties
of the linear and exponential yield damage functions with the
negative exponential weed survival function are consistent with
the general derivations provided by Fox and Weersink.
Rectangular hyperbolic yield damage with the negative
exponential weed survival function produces a concave production
response to herbicide rate when TWS is less than 62 plants/m’.
The logistic damage function with the negative exponential weed
survival has a concave production response to herbicide rate
when TWS is less than 38 plants/m’>. Exponential yield damage
with negative exponential weed survival produces a concave
production response to herbicide rate when TWS is less the 244
plants/m’. Precontrol weed densities corresponding to the above
TWS levels will depend on the weed type. For controls with high
efficacy, such as broadleaf herbicides, production will be concave
with application at the label rate (Hg=1) and precontrol spring
weed densities (SWD;) of up to 885, 540, and 3480 plants/m’,
respectively, for the rectangular hyperbolic, logistic, and
exponential yield damage functions. These are high infestation
levels that were not observed in the field data used in this
analysis but rare occurrences of broadleaf densities of up to 2200
plants/m2 have been observed in farmers' fields in the region
(Hall). Grasses are generally more difficult to control in wheat
and some species can not be controlled because they genetically
resemble wheat. Production will be concave for summer annual
grasses at the label rate (Hg=1) with SWD;+SWD, up to
approximately 120, 80 and 520 plants/m’, respectively, for the
rectangular hyperbolic, logistic, and exponential yield damage
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functions. Field observations of summer annual 'grass weeds in
winter wheat in the study region have densities below these
levels, but higher densities can occur (Hall).

The precontrol weed densities for concavity to hold will
be lower than those indicated above if control rates are less than
label rates. To maintain concavity at Hg=0.5, the SWD; of
broadleaves would have to be less than 225, 135 and 880
plants/m’, respectively for the rectangular hyperbolic, logistic, and
exponential yield damage functions. To maintain concavity for
grasses at Hg=0.5, the SWD, + SWD; of grass weeds would have
to be less than 85, 60 and 370 plants/m’, respectively, for the
rectangular hyperbolic, logistic, and exponential yield damage
functions. The broad range of theoretically appealing concavity
for the exponential yield damage function makes this function
attractive for empirical use.

With the three most frequently used yield damage
functions (hyperbolic, logistic, and exponential), convexity and
increasing returns to control can only be present when precontrol
weed densities are exceptionally high and control rates are much
less than label rate. Furthermore, caution is required when
extrapolating these results to the region where concavity does not
exist as these values are beyond the data used to estimate the
functions in this study. The region of increasing returns in the
functions may be due to extrapolation rather than actual
increasing returns in pest control. ‘

The presence of increasing returns only when weed
densities are high and application rates are below label conforms
with the biology of control and the ‘registration process for a
pesticide. Prior to registering a pesticide, extensive tests are
undertaken to determine the efficacy of the pesticide. A herbicide
manufacturer is "unlikely to select a label rate where  weed
survival is high and crop yield is increasing at an increasing rate
with the herbicide rate. Profit incentives will likely motivate the
company to set a relatively high label rate where the marginal
product of the herbicide is 'small, "assuming - the rate is
environmentally safe. The higher label rate  will “enhance
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FIGURE 1. Herbicide Rate Marginal Product for Negative Exponential
Weed Survival with Rectangular Hyperbolic Damage: Function
and Five Spring Weed Densities.
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......

Marginal Product (bu/ac)

------
____________

- - 4 g

0 020406 08 1 1214 16 18 2 ——
Postemergence Herbicide (label rate) SWD=500

marketability and reduce liability for nonperformance.

Of the yield damage control functions considered here, the
rectangular hyperbolic is the most commonly used in weed control
research. Cousens argues that the rectangular hyperbolic conforms to
the biology of weed control. Nonetheless, our results indicate that when
this damage formulation is combined with the popular negative
exponential weed survival function, production response should
always be checked for concavity in the feasible data range.

The marginal product of control will depend upon the
level of the particular pesticide, the host crop, initial pest
infestation, other state variables, and the functional form. The
model formulation can ensure a positive marginal product, but no
generalization can be made about the magnitude. For a range of
precontrol weed densities, the marginal product of broadleaf
herbicide is illustrated for our estimated negative exponential
weed survival and rectangular hyperbolic yield damage functions
in Figure 1. The marginal product is monotonically declining
over all herbicide rates for SWDs less than 151. With a price of
wheat of $2.60/bu and cost of broadleaf herbicides of
$11.36/label rate per acre, the marginal product must exceed 4.4
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bu/ac for herbicide application to be profitable. Additional
calculations indicated the marginal product for grasses must
exceed 9.2 bu/ac for profitable control because of higher grass
herbicide costs of $23.85/label rate per acre.

Profit maximizing herbicide rates for the rectangular
hyperbolic, logistic, and exponential yield damage functions for
the above input to output price ratio were similar across all
functions and precontrol spring weed densities (Table 4). For
broadleaf weeds, spring weed density must exceed 10 plants/m’
to justify profitable control for all three damage functions.

TABLE 4. Application Rates Equating the Marginal Value Product with
Herbicide Cost for Three Yield Damage Functional Forms.?

Spring Broadleaf Weeds Grass Weeds

Weed ot

Density I:f;bti? [il:llir Logistic - | Exponential ;e;bt:? Sgllz Logistic Exponential
1 0 0 0 0 0 0
10 0 0 0.1 0 0 0
20 03 03 0.2 0 0 0
30 0.4 0.4 0.4 0.1 0.1 0.1
40 05 0.5 0.5 0.2 0.2 0.2
50 0.6 0.6 0.6 0.3 0.3 0.3
60 0.7 0.7 0.7 0.4 04 04
70 0.7 0.7 0.7 04 0.4 04
80 0.8 0.8 0.8 0.5 0.5 0.5
90 0.8 0.8 0.8 0.5 0.5 0.5
100 0.9 0.9 0.9 0.6 0.6 0.6
110 09 0.9 0.9 0.6 0.6 0.6
120 09 0.9 0.9 0.6 0.6 0.6
130 1.3 1.0 1.0 1.0 0.7 0.7
500 1.8 1.4 1.4 1.5 1.1 1.1

® Assuming a wheat price of $2.60/bu(average price received by eastern
Washington farmers in 2000), broadleaf herbicide price of $11.36/label rate
per acre, and broadleaf herbicide price of $23.85/label rate per acre(major

pesticide price paid by eastern Washington farmers in 2000).



220 Journal of Rural Developement 24 (Winter 2001)

Optimal rates were less than label rate for densities up to about
120 plants/m>. The three functions deviated slightly in
recommendations at high spring weed densities, with the
rectangular hyperbolic recommending rates about 30 percent
higher than either the logistic or the exponential. The results
indicate there is an economic benefit to applying less than label
rates in most situations. Producers in the study region do apply
less than label rates in many situations, but in so doing they
forfeit recourse with the herbicide manufacturer if herbicide
performance is substandard. '

The “excessively high” marginal product of generic
“pesticide expenditures” estimated in some earlier studies
(Headley 1968; Campbell 1976; Carraco-Tauber and Moffitt
1992) are not evident in our analysis of crop and herbicide
specific experimental data. At the label rate, the ratio of the
marginal value product to the cost of herbicides exceeded 1.0
only if weed densities were extremely high.

Conclusions

Bioeconomic modelling of pest control incorporates specific crop,
pest, product, and site information required by production
managers. Bioeconomic models also offer a more controlled
laboratory to test for increasing returns because they conform
more closely to the biological logic of separable control and
damage functions for a specific pesticide and its target pests.
Bioeconomic studies have tended not to show increasing returns
to pesticide application.

For the winter wheat field experiment data in this analysis,
an estimated negative exponential weed survival function was
combined with seven yield damage functions. With Pareto and
Weibull yield damage functions, increasing returns with respect to
herbicide rate was observed throughout the herbicide rate and
weed density range. The estimated linear and square root yield
damage function produced globally concave production response.
Estimated rectangular hyperbolic, logistic, and exponential yield
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damage functions were locally concave over the range of our
data, but did have regions of convexity. This convexity occurred
under conditions of extremely high weed densities and low rates
of herbicide application. These regions were beyond the field data
used in estimation.

Field-level data for winter wheat in south eastern
Washington indicate increasing returns to herbicide application
are unlikely to occur in typical field applications. Further
empirical bioeconomic work is required to determine how
applicable these results are to other regions, crops, and pesticides.
The extensive preregistration procedures for pesticides, and
commercial incentives, would suggest that chemical companies
may set label rates where marginal products are diminishing.
However, crop competitiveness, climate, herbicide resistance, and
other dynamic factors could alter this expectation. Where
production convexity is not precluded by the functional forms,
researchers should always check for convexity with respect to
pesticide rate over the feasible range of their data.
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