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AN INVESTMENT PROGRAMMING MODEL FOR
RURAL COMMUNITY WATER SYSTEM CAPACITI-
ES WITH PRICE-SENSITIVE DEMAND*

MYOUNG KWANG-SIK**

Introduction

Problem Stalement

Current methods for determining capacity for rural water facilties have
too frequently relied on rules of thumb such as multiplying a current rate
of per capita water consumption by a projected level of population over
some specified period of time. Several economic problems are associated
with this procedure. First it assumes the demand for water is perfectly
price inelastic; however, economic theory and recent empirical studies
indicate that the demand for water is price responsive. Second, the rule
of thumb leaves no room for adjusting to different rates of population
growth or different discount (interest) rates when determining the optimum
timing and size of initial capacity and additions to capacity. Yet in deter-
mining how large to build initial or increments to capacity studies have
emphasized two basic factors which are nearly always in conflict: (1) it
pays to build large increments to capacity because there are usually cost
savings (economies of scale) involved in capacity size; and (2) the com-
mitment of resources to a capacity that will not be used for a period of
time is costly since future costs are more heavily discounted than present
costs. Third, water facility capacity is a resource flow concept rather than
a resource stock concept. There are hourly, daily and seasonal fluctuations
in the consumptive demand for water. A system designed for peak demand
periods will have excess capacity during non-peak demand periods. Reduc-
ing demand during peak periods, perhaphs through pricing _policies,
reduces the need for greater system capacity.

Rural community water systems financed by federal loan programs
through the Farmers Home Administration (FHA) have been unable to
plan for sufficient capacity to meet increases in water demand due to popu-
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lation growth since the loan programs can consider only a fixed multiple
of the existing population at the time of loan initiation. As a result many
rural water systems financed by the loan programs must increase capacity
aftel relatively short periods of operation, espemally in fast growing areas.

Purpoa‘e and Objectives -

The purpose of this research was to provide information for the planning
and management of rural water systems in Oklahoma. The primary objec-
tive was to deémonstrate an improved community services planning model
by incorporating intertemporal and attitudinal correlates with decisions
on investments in rural water services. Data derived from sample informa-
tion on rural systems in Oklahoma were used as inputs in the planning
model to determine optimum level in system capacity, level of operation
and consumer satisfaction. Specific objectives were:
1. To review pertinent models of water resource investment planning.
2. To develop programming models related to optimum timing and
size of rural water system investments and optlmum pncmg of
water resources. :
3. To evaluate past public investments in rural water services using
the programming models.

Review of Water Investment Planning Models

An extensive amount of literature on water resource investment planning
and water allocation has developed over the past two decades. Most of
these studies apply mathematical programming techniques to solving the
regional water resource planning problems. The major approaches per-
tinent to this study may be divided into two groups. The first group is the
dynamic, multi-period capacity models. These models generally consider
a given set of possible investment projects (e.g. reservoirs, water treatment
plants) and compute the minimum cost of sizing and sequencing (timing)
of these investment decisions to meet a particular set of demands that vary
over time. However, these studies usually attempt to meet demands that
are not price-sensitive. In this s sense, demands are perceived as requu e-
ments in the model.

The second group is the models that simultaneously consider the allo-
cation and capacity expansion decisions.in planning water resource sys-
temis. These studies are based on the critical assumption that water demand
is sensitive to changes in price. In addxtlon to reviewing these two minor
groups of studies, pertinent work that takes excess capacity (caused by
economies of scale and, positive social discount rates) into consideration
while planning water system devclopment is also discussed.
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Ca/)aciéy Expansion Models

Some of the early models of investment timing and sequencing were
presented by Marglin (1963). The sequencing of simple independent
projects with fixed scale to meet demand projections at minimum cost were
first addressed by Butcher, Haimes and Hall (1969). Erlenkotter (1973a)
proposed a direct ranking approach for appropriate sequencing decisions.

Extension of the simple dynamic programming sequencing framework
to incorporate capacity independence among (hydroelectric) projects was
first proposed and demonstrated by Erlenkotter (1973b). Becker and Yeh
{1974a, 1974b) considered the problem of project independence in develop-
ing water supply for a river basin. Their approach associates a ‘‘firm’’
yield with each reservoir configuration considered in their dynamic pro-
gramming sequencing, timing and sizing model. This ‘‘firm’’ yield is deter-
mined by routing the most critical period flows through each candidate
configuration. The complication of indepedent project scale decisions were
addressed further by a sequence determination framework. Another ap-
proach developed by Martin (1975) utilized a dynamic programming
technique coupled with a network-with-gains algorithm to determine the
optimal capacity expansion policy for a surface water supply system. All
of these dynamic programming models minimize cost of meeting a prespe-
cified, price-insensitive, dynamic (changing over time) demand.

Another attempt at the joint treatment of scale and sequencing was
made by Jokoby and Loucks (1972) in a three stage procedure. They
used a static linear programming model to obtain the initial project scale
decision. These projects, with scale fixed, are sequenced with dynamic
programming. The final solution is then evaluated in a simultaneous mo-
del. Although this conjunctive use of planning models and simulation mo-
dels is a useful approach, it still does not guarantee a global solution.

More recently, Steiner (1977) has formulated a mixed integer pro-
gramming model to determine the capacity expansion of a regional water
resources system. Although marginal water costs have been explicitly
computed and used as basis for pricing water in this framework, it still
treated the water demand as price-insensitive.

Water Pricing and Capacity Expansion Models

Riordan (1971a) was first to use a more general economic efficiency crite-
Tion to obtain a solution to the pricing-investment problem. In this work a
price-sensitive demand for the output of the projects under consideration
is introduced and a marginal cost pricing criterion is defined as required
for economic efficiency. Riordan (1971b) later applied this model to an
investment-pricing problem in an urban water supply facﬂmes system us-
ing hypothetical cost and demand curves.

Cysi and Loucke (1971) also used dynamic programming and price-
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sensitive demand to argue that increasing block rates were welfare maxi-
mizing in the long run for water treatment facility planning. Regev and
Schwartz (1973) used discrete time control theory to formulate an inter-
regional water investment and allocation model. Seasonal prices were
explicitly considered. The results are general, but not operationally com-
putable. Regev and Lee (1975) also developed a planning model for a riv-
er basin development using dynamic programming methods. Their model
was used to find the optimal timing and scheduling of reservoir projects
in a river basin when the demand is price-sensitive. Haimes and Hainis
(1974) proposed an operational framework by incorporating an input-
output demand model with a dynamic programming scheduling algorithm
for a regional water supply system.

More recently a price-sensitive investment model was developed by
Moore (1977) as an extension of the work by Becker and Yeh on the
sequencing, timing and sizing of project investment work (1974b). Arm-
strong and Willis (1977) also formulated and demonstrated an invest
ment and allocation model for water resources planning. They used the-
generalized Bender’s decomposition approach to solve the resulting non-
linear mixed integer programming model.. Adapting the sequencing
algorithm of Erlenkotter and Rogers (1977b), two general frameworks
for investment planning with price-sensitive dynamic demand have been
proposed and illustrated by Erlenkotter and Trippi (1976) and Erlenkot-
ter (1977a}.

Optimum Excess Capacity Model

All of the above models were demonstrated to achieve appropriate planﬁ-
ing schedules of overall water resources allocation with relatively little
attention to deriving optimum excess capacity of water supply facilities
such as the size of water mains or capacity of storage tanks to meet price-
sensitive, growing intertemporal water demand..

Lynn (1973) was one of the first to address the problem of optlmal
facility scale. His work was preceded, however, by Chenery (1952) who
developed a simple model for determining the optimal excess facility ex-
pansion. Chenery’s model was redefined and extended by Manne (1961)
whose work has received much attention from civil engineers. However,
a basic problem with Manne’s model is that the mathematical expression
for the optimal design period is-an-implicit function and in order to cal-
culate optimal excess capacities, trial and error or numerical techniques
are necessary. To overcome this limitation, Lauria, Donald and Sch-
lenger (1977) presented an_approximating equation by which optimal
excess capacity design periods can be calculated directly. Whereas Manne’s
work is limited to capacity expansions, Thomas (1970) extended Manne’s
model by including the optimal scale of .a system for which the level of
demand exceeds the capacity of supply facilities at the beginning of the
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planning horizon. Thomas’ model also was approximated by Lauria,
Donald and Schlenger (1977). Although optimal excess capacity design
periods have been explicitly computed, again the weakness of these medels
is that they do not have a global solution due to assuming water demand
implicitly as price-insensitive.

Distinctive Aspects of This Study

In comparison with earlier studies, the approach developed here for
planning a rural water supply system differs in several aspects. First, the
optimum excess capacity for initial. and expansion systems are computed
as an upper limit of the system. Economies of scale of water supply facilities
are incorporated at a given discount rate to attain the optiaml excess ca-
pacity design. Second, price-sensitive demands are considered in the medel.
They are used not only to indicate the social benefits of water supply but
also to yield the socially optimal prices, reflecting the cost of investrents
and operation and maintenance. Third, investment in an existing rural
community water system in Oklahoma under conditions of uncertain
growth is evaluated by comparing that system against the optimal prices
and excess capacity design resulting from the model presented in this
research. ’

An Investment Programming Model for Rural Water System with
Price-Sensitive Demand ' O ;

A mathematical programming modelr_is developed for planning_ rural
water system capacity when consumer’s water demand is price dependent.
The proposed procedure consists of selecting the optimum capacity, se-
quencing and timing of water system investments. The water rate deci-
sion is determined endogenously such that discounted net social benefits
are maximized. o
First, the assumptions of the model are presented. Second, the specific
configuration of the model is described. Third, computational considera-
tions and solution strategies are discussed. Finally, the basic LP model is

presented.
Assumptions of the Model

The model presented here is based upon a fundamental assumption not
ordinarily considered in water resources capacity decision models. The
assumption is that water demand is sensitive to changes in price. Further-
more, it is assumed that aggregate demand for water varies over time and
can be described by a continuous growth rate. Itis assumed that the price
elasticity of demand is constant throughout the planning period. The price-
sensitive demand is then used in determining the consumer’s willingness-
to-pay and the total benefits of a rural water system. s
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In addition to the above major assumptions in the model, the follow-
ing assumptions are adopted to simplify application in planning optimum
water system investment:

1. Water demand in year y is a function of price in that year and no

other period. :

2. Capital investment costs occur as a lump sum at the time of initial

construction and for any addition to capacxty

3. The operations and maintenance (O and M) costs occur as'a lump

sum in ‘each year of operation.

4. The capital investment costs for initial construction and any addi-
tions are a linear function of capacity and assumed to reflect eco-
nomies of scale, i.e., the cost per unit of capacity is either constant.

-or-decreasing with increasing capacity.

The O and M costs are a linear function of output.

6. The annual social discount rate, r, is assumed to be constant over

time..

- Inflation effects on benefits and costs are not considered.

8. The planning horizon is chosen as 40 years which is the FHA’s
loan :repayment period for community water systems and is as-
sumed equal to the anticipated lifetime of the initial water system
investment.

ot

N

F"orxﬁulatioh of the Model

The objective of the programming model is to maximize the total dis-
counted net benefits from investments in rural community water systems.
The approach is to maximize the difference between the discounted sum
of the benefits from water consumption and the sum of the discounted
costs of the water system made up of investment and operation and main-
terianceé.

Benefit Function

The beneﬁts associated with a glven consumption of water in this analysis
are measured by the consumers’ willingness-to-pay which is denoted as
the area under the demand curve up to a specific quantity demand level,
say Q,, in Figure 1. It is assumed that there is a one-to-one mapping of
Q,onP, (Q,),the demandcurve,and that whena valueof Q , is computed,
the market clearmg price is also specified. For purposes of illustrating the
approach, a linear demand is assumed in deriving the arca under the curve
although in the actual model a nonlinear demand curve is used.

Given the demand functlon for rural community water in year y the
“willingness-to-pay’’ is denoted as:

5@y =714, M
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FIGURE | WiLLivgxess-To-Pay For FQ, (SHADED ARrEA) QUANTITY OF WATER

Price

Demand for
Water

Quantity of

Water ()
where Q , is the community water demand in year y and P, (Q,) is the in-
verse demand function. For a given community the ‘willingness-to-pay’’
%' discounted to the present and summed over the entire planning period
using the annual social discount factor:

1
T+ 1y

o, =

where r is the social discount rate. This yields the following benefit furc-
tion which appears in the objective function of the programming model:

T8~ %0, () @

where Y is the length of the planning period in years,
Cost Function

Water system costs in the objective function consists of two major com-
ponents. The first is the chpital cost of the proposed water system. Since it
is assumed that capacity reflects economies of scale, the capital cost func-
tion is concave. The capital cost function for the water system is denoted
as S (S,), where S, is the capacity added in 7'® time unit (initial capacity
is the addition from year zero). -
Additions to water systems (excluding the initial capacity) have ex-
pected lifetimes that are assumed to be longer than the planning period.
Capital costs are thus annualized over the expected lifetime of the addition
and then discounted to the present for the period from the time of con-
struction to the end of the planning period. The total present worth of
.these annualized capital costs are the costs that appear in the objective
function. For the discount rate r, capital costs are converted to annual
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equivalent costs by applying the capital recovery factor §:

r(l +1)m 3)
(14+nm—1
where r is the social discount rate and m is the expected lifetime of the capi-
tal investment. ‘
For a given or proposed water system, the total discounted capital
costs are: ’

=

T Y
TC=2% 2  aBS(5) (4)
=1 y=(t-1)y+1 .
where:
T = number of building time units in the planning period (if planning
period is 40 and 7 is five years then T is 8) s
7 == number of years in a building time unit {(additions to capacity are
allowed once every ¥ years, if necessary, in order to limit the number of
decision variables and constraints in the model)
7 = index of building time unit, t =1,2,. .., T (beginin yeary =1,
F+ L2y + 1, ... (r—-l)(,v+1)

The second cost component is for the expected system operatlon and’
maintenance (O and M). The O and M costs are defined as the annual
costs for operation and maintenance of the system and are assumed to be
a linear function of quantity of water delivered, (Q,). It can be stated as
cQ, where c is the unit O and M costs and Q,, is the quantity of water
delivered in year y.

The above O and M costs are discounted to the prescnt and summed
over the planning period. The final form of total discounted annual O
and M costs is:

T0=y§_‘_.:1ach, S )

Total Net Benefit
With equations (2), (4) and (3), the compinte objective function for the
programming model is expressed as follows:

Max. (TB — TC — TO) = : 6)
which is to maximize equatinn (2) less equations (4-) and (5). :
Model Constramts

Havmg described the benefits and costs In the objective funcnon, the neces-
sary constraints required for a solution to the model are now expressed.
The first set of constraints states that the quantity of water delivered in
a specific time period cannot exceed total capacity built up to that pcnod
This capacity constraint is stated as follows:
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Q,— 2S<0 | (7 .

where G = [y[§], the ceiling of y/y which indicates the number of Building -
time units up to year y.

The second set of constraints is the allocation constraint which re-
quires that the actual water allocated in year y equals the water supplied
in year y. This can be expressed as: ‘

X,—Q,=0 . ®)

where X, is the quantity of water demanded in year ».

To assure that the capacity decision variable, S, can be established at
most once during any bulldmg ‘time unit, the following constraints are
needed: :

Se—52<0 Q)
and ‘
e <1 (10)

where 3, a given value, is the maximum possible capacity (physical upper
bound) of the water system and <, is a zero-one decision variable repre-
senting the decision to add capacity in period (<, = 1) or not to add
capacity in (. = 0).

Finally, for solutions of this model to be meaningful, all above deci-
sions are required to be non-negative.

Computational Considerations

The optimization model formulated above has 2 nonlinear objective func-
tion with several linear constraints. Since the main focus is to develop a
solvable mathematical model, approximations are made to render the op-
timization model compatible with currently available computer techni-
ques. Plecewise or grid linearization and fixed-charge approximation
techniques are used to approximate the nonlinear objective function. The
concave benefit function is linearized in the following manner. Suppose
a linear demand curve is written as follows:

P(Q) =a +bQ (1)

where price, P, is a function of quantity, Q. Then the area under the de-
mand curve, B, can be expressed as follows:

8={"P(Q)dQ =0 +0560) )

Now the objective function equation (6) can be rewritten as follows
using equation (12):

Max ¢ (Q (a + 0.550) — § () — cQ) — NB o a3)
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where NB is net social benefit. However, notice that equation (13) still con-
tains a nonlinearity. Following Duloy and Norton (1975), this nonlinearity
is removed through the use of the grid linearization technique. Grid linea-
rization requires prior specification of a relevant range of values of the
demand curve and the use of variable interpolation weights on the grid
point. The interpolation weights become variables in the model and
their values are jointly constrained by a set of convex combination con-
straints, ' '

- Implementation of the grid linearization technique is illustrated in
Figure 2. Suppose that initially the demand curve defined in the price-
quantity space passes throufih the point (P;, §,). The relevant range of the
demand curve is defined and truncated at points a and 4. Then the rele-
vant range of the demand curve is partitioned into segments 5 = 1, -
2. For each segment end point the parameters §, and B, are defined to
represent the cumulative known area under the aggregate demand curve
for water.

FIGURE 2 GRID LINEARIZATION OF DEMAND AND BENEFIT FUNCTIONS

Price

Demand Curve

O

Quantity
Benefit | S

Area Under the
Demand Curve (B)

Quantity
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The quanitity of water used and the total aréa under the demand curve
can be expressed as'a weighted combination of §, and B, respectively.

Q
B —

I

M= iMx

oW (14)
B.w, (15)

\
-

3
where W, is a weight variable. The non-negative interpolation weight
. . v , .
variables are defined such that >} W, < 1. Notice here that no more
s=1 ¢

than two consecutive points on the quantity axig will enter the optimal ba-
sis.

For the capital investment cost function, a fixed charge (set-up cost)
approximation approach is used. For example, the capital investment cost
S (S;) becomes (see Figure 3):

$(8:) = fL: + KS: (16)

where
f = fixed charge of the ‘capital cost function; S (S,)
K =slope of the capital cost function
Z, = binary decision variable

The Basic LP Model

To reduce the dimehnsions of the LP model, a fivé year decision time unit,
7, is used instead ofian annual time unit, y. Thus, new discount rates, d,,
and growth rates, , are computed which cover five year periods. Also,
utilizing the grid hneanzatzon described, the basic linear programming
model can be stated as follows:

FIGURE 3 Fixep CuarGE CAPITAL Cost Funcrion

Capital
Cost

K=Marginal cost

; = Fixed charge

0 } Quantity (S)
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MAX NB = 3.d; (B;, Wy, — ¢Q.) ~ (17)
%,z

B>, i a, (KS; +fo)

T y=(-1y+1

subject to
water balance equation (WBAL)

""Q.r'f‘é:Q,n W,<0 (18)

system capacity constraint (CAP)

0. -8 <0 : (19)

z=1
convex combination constraint (CONV)

WL <h (20)

integer constraint (INTEGER)
Sr - SZ, <0 (2 l)

A portion of the initial LP tableau (covering two periods) is presented in
Table 1.

Results of the Programming Model

Results of the mixed integer programming model with water demand
and supply data derived by Myoung (1982) are presented and discussed.
The effects on community water system investments from varying para.
meters such as the growth rate and discount rate are investigated.

Since some of the coeflicient (for example, price elasticity of demand,
discount rate and growth rate) used in the planning model are subject to
variability, a comprehensive sensitivity analysis of the most likely com-
binations of input parameters was performed. Such analyses should pro-
vide more insights into the usefulness of the proposed model for decision
making purposes. A number of computer runs were made to explore the
impact of each parameter on the benefit-tnaximizing investment function
- and the resulting water rates. The purpose is to show how sensitive water
rates and investment decisions are to the discount rate and growth rate
for a community’s water system.

Base Results

The base results consist of an optimal capacity expansion schedule for a
water system growing in thé number of customers at eight percent annually,
the operating level of the water system over time in association with the
optimal investment schedule, and the water rates at which the consamer’s
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demands are satisfied for varying discount rates. The operating levels ac-
tually imply a set of facility policies. The optimal solutions of the base
results are for the average size community of the sample survey admini-
stered by Myoung (1982). '

Optimal Capacity Investment Schedule

The average annual growth rate of the sample of rural water districts was
elght percent per year. The optimal investment decisions for the average
size community at initiation of water system services with expected eight
percent per year growth are shown in Table 2. The solutions indicate
that the initial system should be built at capacities of' 136.9 .mgy,* 108.7
mgy, and 93.8 mgy if one percent, three percent, and five percent discount
rates are applied, respectively. According to the schedule of solutions these
initial capacities are maintained through time unit three (15 actual yearrs
in the model) ) and then new facilities are added at the beginning of time
unit four. The size of added capacities beginning with time unit four are
179.5 mgy, 187.2 mgy, and 162.5 mgy, respectlvely, for the associated
discount rates. The solutions also indicate that beginning with-time unit
six and until the end of the planning period new additions are made for
every time unit. This is because the eight percent growth in the later time
units bring more capacity requirements than the early time units. In other
words, capacity should be added every five years to meet eight percent an-
nual growth for the given discourit rates. Total capacities built during the
entire planning period are 1320.5 mgy, 1194. 7 mgy and 1003.5 mgy,
respectively.

Optimal solutions associated with the higher discount rates show that
water systems are not build in time unit one even though there is a de-
mand for water. In other words, the construction of water systems should
be delayed until time unit two if the discount rate is seven percent and time
unit four if the discount rate is nine percent. If the discount rate goes up to
15 percent, no water system is optimum under the model conditions.
That is, the expected present worth of the cost (building and opé¢ration)
of the system is greater than the expected present worth of the benefit it
will provide regardless of when it is built (ngen the discount rate is 15
percent). . ~

The programming results correspond with the theory discussed ear-
lier that one of the factors determining optimal capacity is the -social
discount rate, Suppose the discount rate is zero. Then, it would be perfectly
sensible to spend a dollar now in order to save a dollar’s worth of costs
either in the next time period or ten years from now, or 100 years, thus,
the limit to the size of capacity is dependent only 6n thescale factor. With
a positive discount rate, however, to save a dollar’s worth of cost in"a-fu-

- 1 mgy is million gallons per year. =



TABLE 2 OptivaL CapacrTy® INVESTMENT ScHEDULE FroM THE Bastc Resurts AT Ereut PERCENT GROWTH

Discount Objective Building Time Unit
" Rate Value
(percent) %) 1 2 4 5 6 7 8 Total
1 5,534,429 136.9 — 179.5 — 295.2 287.6 421.3 1320.5
3 2,519,708 108.7 — 187.2 — 257.4 260.2 381.2 1194.7
5 1,062,444 93.8 — 162.5 — 208.5 218.5 320.2 1003.5
7 372,982 — 118.2 — 226.8 —_ 249.5 278.9 873.4
.9 i 85,317 — — 215.3 — - 292.0 2377 745.0
15 — . — - ~—

® Amount of system capacities in mgy.
(

|
1
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ture time period we only need to spend less than a dollar now. Therefore,
under given economies of scale if the discount rate islow the size of optimal
capacity is relatively large whereas if the discount rate is high the size of
optimal capacity is relatively small.

Optimal Water Supply Scdedule

There are two major factors which directly influence the short run level
of water supply: size of capacity and growth in water demand. It is rea-
sonable to say that an increse in number of customers will result in an
increase in water supplied as long as excess capacity exists. However, how
fast water supply should be increased depends mainly on the price elasti-
city of demand for water and the system’s growth rate. Once water supply
reaches the maximum capacity, to increase supply requires the next addi-
tion to capacity.

The optimal water supply schedule for the average size community
in the sample with an eight percent growth rate during the planning period
is presented in Table 3. As in the case of optimal investment, the various
discount rates show the sensitivity on optimal water supply. For the case
of a one percent discount rate the optimal water supply increases signi-
ficantly from time unit one to time unit eight. Optimal water supply in-
creases from one time unit to the next time unit except for time unit three
which is the same as that of time unit two. This is because the system
reaches its maximum capacity in time unit two and additional capacity
is not optimum until time unit four. It is noted that the increase of water
supply in the later time units are relatively greater than those of the earlier
time units. This is explained by the compounding effect of an eight percent
growth rate during the whole planning period. That is, eight percent
growth in earlier time units results in relatively smaller net increases in
number of customers than is the case for later time units. In fact, it is pro-
bably not realistic to assume that the water system grows at a constant rate
during the whole planning period, i.e., eight percent. A more realistic
assumption would be for water systems with fast growth at the beginning

TABLE 3 OpriMaL. WaTer SuppLy® ScHEDULE FroM THE Basic Resurts AT Eieur
PeERCENT GROWTH

Discount Water Supply Level for Each Time Unit

Rate :

(percent) 1 2 3 4 5 6 7 8
1 93.8 1369 1369 2973 3165 6116 899.2 13206
3 93.8 108.7 108.7 2959 2959 5533 813.5 11946
5 93.8 93.8 93.8 256.3 2563 4648 6833 1003.5
7 — 1182 1182 1182 3451 3451 5946 873.1
9 — —_ — 215.3 2153 2153 507.3 754.0

15 — —_ — - - — — —

s Amount of water supplied in mgy.
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and then slower growth during the remaining part of the planning period.
Of course, the specific rate of growth depends upon the environment of
individual systems.

The water supply schedule also includes solutions for various dis-
count rates. As observed in the optimal capacity schedule, a system’s water
supply declines as the discount rate increases. Again there is no water sup-
ply in time unit one for the seven percent discount rate, time unit one, two
and three for the nine percent discount rate, and the whole planning pe-
riod for the 15 percent discount rate because no water capacity was built
for these time units.

Optimal Water Rate Schedule

Optimal solutions for capacity and water supply representing different
growth and social discount rates are read directly from the output of the
programming model. However, the model does not provide the optimal
water rate schedule directly. The optimal water rate is computed by sub-
stituting water supply for each time unit into that unit’s demand equation
representing a particular growth situation. To do this, it is necessary to
derive the demand equation for each time unit.

Using the estimated price elasticity of demand for water and the
initial average price and quantity of water demanded for the sample of
rura] water districts, the general demand function in rural Oklahoma was
derived (Myoung). The demand equation at zero time in Table 4 shows
that if the water rate increases one dollar per mgy the quantity of water
demanded will decrease about 15,000 gallons per year. The assumption
is made that consumer response to price change is relatively constant dur-
ing the planning period even though the water system measured in terms
of number of users grows in future time units.

Growth of the water system on the price-quantity plane can be ex-
pressed by rotation of the initial demand curve as shown in Figure 4. Let
D, represent the demand curve before growth (i.e. at time unit zero),
whereas D, represents demand after growth at time unit one. The price-
quantity relationship shows that if the price level is P;, Q , amount of water
is purchased by the given number of customers in a community (say 100
customers) at time unit zero. Assume that the number of customers in-
creases to 200 at the end of time unit one—a 100 percent growth compared
to the original number of customers. The amount of water purchased by
200 customers at time unit one would be Q, if the price level stays at P,.
Thus, by the assumption of constant consumer response, Q, should be
exactly twice that of Q. Since this price-quantity relationship is true for
each and every level of prices, the demand function for time unit one can
be derived by using the information from the initial price-quantity rela-
tionship and growth in number of customers. Practically, this is derived
for time unit one by dividing the slope of D, by its growth index.
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TABLE 4 Rotatep Demanp Eguattons For Eacua Tme Usir at EigHT PERCENT
AnnvaL GrowTH RatE :

Time Growth Demand Equations

Unit Index (h) (Inversed)
0 1.00 p = 5300 — 68.6Q
1 1.47 p = 5300 — 46.8Q)
2 2.16 p = 5300 — 31.9Q
3 3.17 P = 5300 — 21.7Q
4 4.66 P = 5300 — 14.8Q
5 6.85 P = 5300 — 10.0Q
6 10.06 P =5300 — 6.8Q
7 14.79 P =5300 — 4.7Q
8 21.72 P =5300 - 3.2Q

P = price per mgy dollars.
(), = quantity of water demanded in mgy.

FIGURE 4 RotatioNn or DEmanp Curve By GROWTH
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The demand equations for the different time units in Table 4 are
derived in this manner—dividing the slope of the initial demand curve,
68.6, by the growth index in column two. For the Base Results, since a
constant growth rate of eight percent per year is applied throughout the
planning period, the demand curves become flatter and flatter as the
system grows. . .

The optimal water rate schedule is computed by substituting the
water supply into each time unit’s’ demand equation. To analyze the
optimal rate schedule, not only the relationship between optimal water
supply and growth rate should be considered but also the optimal capacity
schedule. This is because the water supply schedule is influenced by the
optimal investment schedule. For example, in Table 5 the rate schedule for
the one percent discount rate fluctuates from one time unit to another
time unit depending upon timing of additional capacity. If there is pres-
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sure on capacity due to system growth it will result in addition of new
capacity which allows an increase in water supply. The increased water
supply brings the water rate down but not necessarily as low as if the system
stayed on the same demand curve. The reason is that the slope of the new
demand curve from which the optimal water rate is computed is now flat-
ter than the previous demand curve.

In Table 2 for a one percent discount rate the initial capacity is 136.9
mgy but the actual water supply is 93.8 mgy at time unit one in Table 3.
That is, 43.1 mgy excess capacity is reserved for future growth, Substitut-
ing 93.8 mgy amount of water supplied in the first time unit demand curve
results in a water price of $910.20 per million gallons. In the second time
unit, all of the existing capacity is utilized due to the system’s growth.
Therefore, again substituting the optimal water suply, 136.9 mgy into the
second time unit’s demand equation results in $932.90 per million gallons
as the water rate which is only slightly higher than that of the first time unit.
In the third time unit, there is another eight percent growth in the sys-
tem but additional capacity has not come into the solution yet. Therefore,
the amount of water supplied is restricted to the maximum capacity by
raising the water rate. That is why the water supplied during the third time
unit 1s the same as that of the second time unit but the water rate is signi-
ficantly higher. Water rate is used as a means to allocate a given amount
of water to more customers. In the fourth time unit there is another eight
percent growth per year. Now the water system no longer relies strictly
on the role of price to maintain existing capacity. Therefore a new capa-
city additon comes into the solution (see Table 2). With new additional
capacity water supply increases and consequently the optimal water rate
decreases. These interrelationships among growth rate, optimal capacity
schedule, optimal water supply schedule, and optimal water rate continue
untif the end of the planning period for each discount rate.

Analysis for Alternative Growth Rates

Rural community water systems have shown substantial variability in
growth (Myoung, 1982). The focus of this study was to maximize net soical
benefits assuming decision makers knew the sytem’s growth at the time of
initial planning. This is seldom the case. Myoung (1982) presents an ex-
tensive analysis of program solutions for various growth rates, some
varying within the planning period itself, and for different size water sys-
tems. Some general conclusions of that analysis are given here.-

Consumers of rural water services in Oklahoma are price sensitive.
Thus the price of water will affect the demand for water. For economic
water rates should be set equal to the marginal cost of providing additional
water. Thus, the objective of determining the price of water which maxi-
mizes social benefits must take into consideration the demand for water
and the cost of supplying water.
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TABLE 5 OptiMaL WATER RATE* ScHEDULE FroMm Base REsurts AT EiGHT PERCENT

GROWTH

Discount Optimal Water Rate for Each Time Unit
Rate .

(percent) 1 2 3 4 5 6 7 8
1 910.2 932.9 23293 900.0 2135.0 1141.1 1073.8 1074.1
3 910.2 18325 2941.2 920.7 2341.0 1537.6 1476.6 14773
5 910.2 23078 3264.5 1506.8 2737.0 2139.4 2088.5 2088.8
7 —_— 1529.4 2735.1 3550.6 1489.0 2953.3 25054 2506.1
9 — — — 2113.6 3147.0 3836.0 29157 2916.0

15 — — — — — — — —

¢ Dollar per million gallons.

Water supply costs show significant economies of scale in rural water
system investment and operation and maintenance. The growth analysis
strongly supports the excess capacity model as a framework for planning
optimum water system capacity. Failure to optimize on excess capacity
may lead to under- or over-investment in community water systems and
thus reduce social benefits due to inefficient allocation of resources. Under-
investment for any particular community may force duplication of faci-
lities (parallel lines) which could have been avoided if optimal capacity
were planned from the beginning. Therefore, the objective of determin-
ing the optimum capacity of rural water systems which maximizes social
benefits must incorporate expected growth in water demand as well as
the economics of water supply.

Results of the mathematical programming model suggest the following
policy decision criteria for planning rural water systems:

1. Price-sensitive consumer behavior should be considered in deci-

sions of rural water services capacity design and water pricing.

2. The existence of economies of scale in water supply are important

in determining optimum timing and size of water facility invest-
ment. '

-3. Predictions of growth are highly important in planning optimal

water system capacity.

4. All of the above criteria should be considered simultaneously

along with the discount rate in making global optimal water supply
decisions for specific water districts.

Comparison of Net Social Benefits Between Actual and Optimum:
The Case of Murray #1

To demonstrate the advantages of the optimal investment programming
model for planning rural water systems, a comparison of program results was
made with an actual system, Murray # 1. Using the general demand equa-
tion for water and the actual water investment and supply records of



An Investment Model for Rural Community Water System Capacities 121

Murray #1, net sccial benefits were ccmputed. Then net secial benefits
were computed using the optimal investment programming mcdel and
the actual rate of growth of Murray # . Finally, the two netsocial benefits
were compared.

Murray # 1 water system started supplying water in 1967. The annual
water demand, number of customers and investment record of Murray
# 1 are presented in Table 5. The amount of water demanded and the num-
ber of customers show dramatic increase since the system started cperation.
The initial number of users, 229 in 1967, increased to 934 in 1980 and re-
sults in a 12 percent annual growth rate. In addition to the initial invest-
ment, there were two expansion of capacities to meet growth cf the sys-
tem, 1973 and 1978.

It was assumed that the customers in Murray #1 have the same
consumption behavior as explained by the general water demand equa-
tion. To reflect system growth, the general demand equation was rotated
as explained previously. Specifically, the slope of the original demand
equation was divided by the index of growth.

Using the rotated demand curves and the actual water demand,
consumer benefits were computed. The revised demand equation and the
gross benefits for each year are presented in Table 7. The gross benefits
for each year are presented in Table 7. The gross benefits are discounted
at five percent to compute the present worth of water consumption be-
nefits. Also, Table 7 includes the present worth of actual O and M costs
to run the water system each year and the present worth of gross benefits
less the total present worth of O and M and capatal costs. The net social
benefits equalled $204,478 for the actual Murray #1.

TABLE 6 A~NuAL WATER DemaND, NuMBER of CUSTOMERS AND INVESTMENT RECORD
FOR MURRAY #1 WATER SYSTEM

. Water No. of Index of Investment
Year Demand Customers Growth Record
(mgy) . )]
1967 18.2 229 100 314,745
1968 ) 16.8 230 100 —
1969 17.8 243 106 —_
1970 ’ - 17.4 252 110 —
1971 17.3 268 117 —_
1972 ] 174 389 170 —
1973 . 24.0 475 207 66,000
1974 36.0 525 229 —
1975 40.7 566 247 —
1976 ‘ 39.2 599 262 —_
1977 : 38.8 . 654 286 —
1978 57.1 , 762 - 333 225,000
1979 63.4 859 375 —

1980 86.9 934 408 —




TABLE 7 . ActuaL Benerirs AND CosTs IN SUPPLYING WATER FOR MURRAY #1 WATER System

Discounted - Discounted
Gross Discounted Capital
Revised Water Gross Benefits O&M Costs Investment
Year Demand Equations ‘Supply Benefits at 59, at 5% at 5%,
" (mgy) $) ® (9 (%)
1967 P = 4840.2-189.4 Q) 18.2 25,355 24,148 6,311 198,799
1968 P = 4840.2-189.4 Q 16.8 . 27,859 25,269 -5,390 —
1969 P = 4840.2-178.7 Q 17.8 29,536 25,514 5,439 —
1970 P = 4840.2-172.2.0, 17.4 32,084 26,396 5,063 —
1971 . P = 4840.2-161.9 Q 17.3 35,280 27,704 4,794 —
1972 P.= 4840.2-111.4 Q 17.4 50,492 37,678 4,592 —
1972 P = 4840.2-91.5 Q 24.0 63,461 45,101 6,033 15,741
1974 P = 4840.2-82.7 Q 36.0 67,068 45,394 8,618 —
1975 P = 4840.2-76.7 Q, 40.7 69,943 45,086 9,280 —
1976 P = 4840.2-72.3 Q 39.2 78,637 48,276 8,512 —
1977 P = 4840.2-66.2 Q 38.8 88,140 51,534 8,024 —
1978 . P = 4840.2-56.9 Q 57.1 90,858 50,593 11,246 13,512
1979° " P ='4840.2-50.5 QQ, 63.4 103,881 55,090 11,892 —
1980 P = 4840.2-46.4 Q 86.9. 70,219 35,465 15,524 —
TOTAL 543,248 110,718 228,052

tuaudopaca(q pamyy fo jpumof raAl
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TABLE 8 OpriaL INVESTMENT, OPERATION LEVEL AND NET Sociar BENEFIT FROM
THE PROGRAMMING LEVEL

Building Operation Net Social
Time Unit Capacity Level Benefit
: (mgy) (mgy) $2
1 728 41.2 —
— 72.8 —
3 55.2 128.0 —
. Total 128.0 310,176

* Adjusted to reflect four year time unit,
® Program does not permit allocation of net social benefits by time unit.

The optimum solution derived by the investment planning model is
presented in Table 8. For the model solutions, the actual 12 percent growth
rate is combined with the general demand equation and general O and M
and capital cost functions. The optimum solution shows that 72.8 mgy
capacity should have been built in the initial time unit and 55.2 mgy
should have been added in the third time unit. The optimal supply
schedule shows a significantly larger volume of water being supplied than
for the actual system. The objective value generated by the optimal solu-
tion'is $310,176 which is about 52 percent higher than that for the actual
water system, '

chezfal_ conclusions can be drawn from the results of these compa-
risons. )

1. Decision makers underestimated growth of the water system and

built too small an initial facility.

2. Because of an incorrect investment decision, the Murray # 1 com-
munity lost considerable benefits which could have been gained if
optimal decisions had been made,.

3. Uncertainty relative to system growth may have been a major
factor contributing to under-investments by the Murray #1 de-
cision makers. The optimal programming model is a way to im-
prove economic efficiency in decision making of water system in-
vestment but does not reduce the problem of uncertainty relative
‘to system growth.
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