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ECONOMETRIC MODELING OF PEST MANAGE-
MENT TECHNOLOGY AND ENDOGENEITY OF
PESTICIDE INPUT

PARK SEONG-KWAE*

Introduction

The aim of this paper is twofold: econometric modeling of pest manage-
ment technology and development of an appropriate estimation method
under the conditions of input endogeneity, nonlinearity in endogenous
variables, and heteroskedasticity. In the modeling of pest management
technology risk and output dynamics are an important joint considera-
tion. Agricultural crops pass through several growth stages m the course
of a season’s growth. The biological plant dynamics (i.e., output dynamics)
-accompanies pest incidence at each growth stage so output dynamics and
associated pest problems lead a farmer to choose pesticide input sequenti-
ally (Antle 1983a, 1983c). Thus, pesticide input becomes an endogenous
variable.

A standard statistical procedure for empirically analyzing produc-
tion risk is the method of moments. Several studies (Day, Roumasset,
Anderson) applied this method to the experimental data. However, the
method of moments has serious limitations since hypothesis tests for pro-
bability distributions requires a large body of cross-section data over a con-
siderable period of time. Just and Pope suggests econometric procedures
for estimating the mean and variance of output as a functions of inputs.
Their model is based on an heteroskedastic additive error specification
which can appropriately reflect the effects of inputs on output variance.
In a study of optimal choice among alternative technologies with random
yield, Yassour et al. developed an expected utility, moment-generating
function technique, considering the first moments of output distribution.
Applications of this methodology include Moffitt et al., and Liapis and
Moffitt. Taylor presents a hyperbolic trigonometric transformation
procedure for estimating the form as well as the parameters characterizing
the probability density function or the cumulative function. The Taylor’s
technique may be useful for safty-first and stochastic dontinance considera-
tion, but the computation of expected utility requires numerical integra-
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tion using this method. Most risk analyses in the area of agricultural pest
management (Carlson 1970, Willey, Farnsthworth, Feder, Lazarus and
Swanson) have been based on the expected utility hypothesis. Carlson
(1984) observed that pesticide input endogeneity can provide inconsistent
estimates. Few empirical studies have taken such input endogeneity into
consideration. .

This paper applies the flexible moment-based approach (Antle
1983b) to risk analysis of a worm monitoring program for processing
tomato production in the Sacramento Valley. This model has several
advantages in production risk analysis: mitigating enormous data re-
quirement of Day’s approach, providing a systematic method of approxi-
mating moments, avoiding arbitrary restrictions on stochastic production
functions, providing manageable econometric estimation technique. The
empirical models of tomato net output and worm damage are specified
as quadratic in production inputs and as linear in relevant dummy varia-
bles. Thus, nonlinearity in an endogenous variable (i.e., insecticide input)
is associated with the quadratic functional specifications while heteroske-
dasticity is the inherent characteristic of the moment-based model.

The first section of the paper develops the theoretical basis for this
study and discusses the pesticide input endogeneity prolem. The second
section discusses data and variables in the model, empirical model specifi-
cation, estimation method (nonlinear instrumental variable-generalized
least squares technique), hypothesis test statistics, and empirical results.

Theoretical Considerations

An important source of risk in agricultural crop production is damage
from pests. This is a particular concern to farmrs where there are quality
standards (e. g., in processing tomato production there is a 2 percent
worm damage tolerance level set by the State of California). Pest damage
directly affects the proportion of crop marketed and thus a farmer’s
profit. Hence the farmer’s pest management and other input decisions are
directed toward reducing damage from pests (or meeting the quality
requirement).

Assume that output and input prices are nonstochastic. The relation-
ship between profit normalized by output price (), the amount of crop
marketed (Q?), gross output (Q%), and worm damage (Q¢) can be given
in terms of production inputs by

() n=Q(P, L) —W,P—W,L

=Qf(P,L)V(P, L) — W,P—W,L
where 7 and W’s are profit and input prices normalized by output; Vis
[1-Q¢ (P, L)]; Q¢ is percentage of worm damage; P is pesticides; L is
pest monitoring labor. In addition to P and L, other inputs are related to
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yield and worm damage, although not all directly affect the yield and
quality of product. For simplicity in this presentation, all variables other
than pesticides and pest monitroing efforts are assumed to be applied in
an optimal manner. The model can be generalized to allow choice of all
variable inputs. ;

The farmer views growth output (Qf), damage rate (Q%), and net
output (Q%) as random variables due to the uncertainty of surrd‘unding
weather conditions and pest populations during the growing season
Thus, the farm manager is faced with the entire probability dlstrlbu-
tion of Qf and Q¢ functions instead of being faced with single ! ‘means.
The probability distributions of the variables are related to the f?rmer’s
production input decisions. Therefore, the random variables can be de-
fined as follows: means are M,%, M,%, and M.%; Q°~ h, (Q°|P, L) QF
and Q% ~ A(Q%, Q7| P, L).

Agricultural crops pass through several stages in the course of a
season’s growth: seedling establishment, vegetative growth, ﬂowermg, and
harvest (or fruiting). These stages all differe in nutrient requirements and
susceptibility to pests. Near harvesting time is when crops are most suscepti-
ble to insect pests and when worm damage most often occurs, wk;lile QF
is largely determined during the first three stages. The assumption of
independence between the two rand omvariables, Q # and Q¢, is supported
by crop plant biology. The three above random variables (Q7, Qf, and Q¢)
are non-negative and bounded. Therefore, all moments for each variable
exist and uniquely determine the conditional probability distribution on
production inputs. It follows that all economically relevant characteristics
of the production technology must be embodied in the relationships
between inputs and moment. Therefore, the farmer’s behavior under
production risk can always be defined in ‘terms of the moents of the
probability distributions of Q%, Q%, and Q¢ (Antle 1983b). Since the dis-
tributions of @7, Q4, and Qf are assumed independent and are defined as
h, (Q2|P, L), by (Q?|P, L), and h, (Q?*|P, L), respectively, the moments
of 02, Q4 and Q% can be expressed as

@) My = [Qh(QrIP, dQ"
My = I(Qj — M )h,(Q| P, L)dQ", i>2andn=a,d,g

Note that the distributions of Q¢ and Q¢ directly influence the distribution
of O,

The damage rate and the shape characteristic of Q¢ probability dis-
tribution —AM,¢ and M, i>2-are hypothesized to be of concern to the
farmer because Q¢ is directly related to Q¢ and hence to the farmer’s eco-
nomic returns. The farm manager’s decisions on input combinations may
result in different probability distribution of worm damage. For example,
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FIGURE 1
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Worm damage (Q¢) probability distributions associated with different input com-
binations (** worm damage tolerance level set by the State of Galifornia).

as shown in figure 1, one input combination (P;, L,) can result in a quite
different probability distribution of Q¢ from another (P,, L,). If input com-
bination (P,, L,) is more effective in reducing the variance of Q¢ and
“cutting off” the upside tail of the Q¢ distribution than (P,, L,) the farmer
would choose the pest management strategy which is associated with
input combination (P,, L,).

Note that by attempting to move the Q¢ distribution towards the origin,
the farmer is “cutting off” the lower tail of the Qf (or Q¢) distribution.
This kind of behavior (often called aversion to downside risk) has been
ascribed to a disaster avoidance motive (Menezes et al.).

In this study it is hypothesized that the farm manager chooses pro-
duction inputs to maximize expected utility of profit. Assume that a
Taylor’s series expansion of the underlying utility function converges.
‘The Taylor’s series expansion of the utility function is used to express
the expected utility as a function of moments of profit. Terms beyond those
involving the third moment of profit are ignored since they add little
precision (Anderson; Dillon; Hardaker). It is also generally recognized
that the first three moments of output distribution may be a basis for
ascertaining the degree of production uncertainty (Heady; Anderson;



Econometric Modeling of Pest Management Technology 201

Roumasset; Antle 1983b; Antle and Goodger). Furthermore, under the
quality standard on worm damage the farmer is concerned with the
risk of Q7 falling above the quality requirement so the third moment of
Q¢ (or Q°), representing the asymmetry or skewness of the distribution,
may be an important consideration in pest management and other input
decisions. In the empirical analysis the three moment functions for each
of Q2 and Q7 are estimated.

Letting X and W be input and input price vectors, the average far-
mer’s decision problem can be written in terms of the mean, variance,
and third moment of normalized profit as follows:

(3)  max EU () = UM,*(X) — WX), My*(X), M#(X)).

Note that M2, i = 2, 3, are the moments of Q° since 7 = Q@ —WJX and
thus (n —E(n))! =(Q°-M,%)’, 1=2,3.

First order conditions for maximizing expected utility are obtained
by taking the derivatives of equation (3) with respect to the decision
variables and setting the results equal to zero:

(4) (@My2)dXy) + (Un|Up)(dMyeldX,) + (Us|Uy) (dMy2|dXy) =W

where U, is partial derivatives with respect to moment :. Equation (4)
can be rewritten in terms of moment elasticities:

(3) mye + (Uo]U) (Moo [ M #)nyye 4+ (Us[Uy) (M5°[ M%)
= (Wka)/Mla

where n; = (dM *[dX,) (X M), 1=1,2,3

Equation (5) is the condition for optimal input decisions (on pest
management) and can be used to analyze decision making under produc-
tion risk. (U,/U,) and (U;/U,) can be interpreted as Pratt’s absolute risk
aversion coefficient (r*) and down-side risk aversion coefficient (r**),
respectively. The terms ny, i=2, 3, denote the marginal impact of input
k£ on moment ¢. Determination of the sign and magnitude of n, is an
empirical question. The expression {{U,/U,) (M,*/M,°)n,;] represents mar-
marginal adjustment to variance and [(Us,/U,)(M,°[M,°) ny ] denotes mar-
ginal ‘adjustment to skewness at the optimum. Thus, [(U,/U;)(M,*[M,°)
o+ (U U (M2 M,9) ny,] is the total marginal risk adjustment factor in
equilibrium. These imply that at the optimum the expected value of
marginal product, after risk adjustment, is equal to the normalized factor
price. If a grower is risk-neutral, the relative factor share will be equal to
the production elasticity with respect to input k. A risk averter taking
into account the mean and variance of Q¢ will choose inputs such that
the first two terms on the left-hand side of equation (5) equal the right-
hand side, while a downside-risk averter ‘will employ production inputs
in equilibrium by setting all three terms equal to the relative factor shares.

. The sum of two terms involving the derivatives of the second and
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third moment with respect to input % on the left-hand sidé of equation
(4) is the maximum monetary value which a grower would be willing to
pay in order to get the value of expected marginal product, dM,°/dX,,
at the optimum. This is equivalent to the value of input K applied for in-
surance purposes, compared with risk neutrality. Therefore, the quantity
(dM,*(X)[dx,+dM,*(X)[dX,)] can be interpreted as marginal risk emium.
It’s magnitude depends on r*, r** and dM(X)/dX, i=2,3. Equation (5)
can be interpreted in the same way. If given pest control technologies
yield the same expected profit, the growers would prefer to choose the
pest management method incurring smaller risk premium.

Pesticide Input Endogeneity

In agricultural production most input X;’s are determined in the early
production stage. However, pesticides play a role as an intermediate
input due to pest activities associated with plant growth stages (i.e., output
dybamics and associated pest problem). Both pest infestations and crop
plant growth are influenced by random events such as weather condi-
tions occurring over the growth stages. This leads farmers to choose in-
insecticides sequentially and as a result pesticide input becomes an endo-
genous variable (see Antle 1983a for detailed discussion of this issue).
This is especially true in the case of the pest control technology supported
by a systematic pest monitoring technique which specifies a formal pro-
cedure by which growers collect information on pest populations and
spray accordingly (e.g., the worm monitroing prgram for processing
tomato production developed by the University of California). More
systematic and precise pest control techniques may not necessarily reduce
pesticide treatments.

Moment Model Specification and estimation

Equation (2) implies that the Q% and Q¢ moments may be functions of
production input X. Thus, under the assumption that there are linear
relationships in parameters between production inputs and the Q¢ and
Q¢ moments, Q® of the jth farm (or field), n=a, d, can be written as their
means Mf(X;) plus an error &; with zero expectation:

6) Q1+ Mp(X) + ey, E(gy) =0, n=ad

where ¢, is assumed to be independently distributed. Similarly, noting
that E[Q; — M#)= E(e8), 1=2,3, and n=a, d, it follows that

(7) &, = MX) + &, E(e,) =0, i=23.

In estimation of the moment models, there are two important econo-
metric problems: pesticide input endogenity and heteroskedasticity. In
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addition, non-linearity problem in endogenous variables is discussed here
because in the following sections the empirical models of Q°and Q¢
have linear-in-parameters quadratic functional spedifications.

When farmer use systematic pest control techniques, the final output
Q°, damage Q¢, and pesticide applications I, are functions of the pest
population, a random variable. Hence, equation (6) and (7) violate the
assumption, required for consistent estimation, that the explanatory vari-
ables X be independent of the error terms ¢, i=1, 2, 3. Given the endo-
geneity, application of an OLS regression provides inconsistent parameter
estimates (Theil, Kmenta). To solve the endogeneity problem, the cor-
relations between I and the disturbance must be purged. One way to do
this is to find an optimal instrumental variable I for  which is orthogonal
to the disturbance term in the probability limit. An optimal / can be ob-
tained from the first stage of the two stage least squares (2SLS) techniques
since the first stage purges correlation with the second stage error, and the
second stage involves a usual OLS regression. Hausman showed that
9SLS is the best instrumental variable (IV) estimator. However, the
IV and 2SLS estimators remain identical only so long as all predeter-
mined variables are used to form the istrumental variable. Thus, in-
secticide quantity I is expressed as a function of all the variables (but 1)
(X) in the moment model and other exogenous variables (H) such as input
and output prices as follows:

(8) = (X; H)

I is the fitted value from the corresponding OLS regression. If, however,
the functional form is nonlinear in the endogenous variable I such as the
quadratic here, the use of I? in the quadratic specification results in an
inconsistent estimator because the instrument I2 will not be orthogonal
to its estimated residual (see Kelejian, P. 374). Thus I?> must be treated
as an additional endogenous variable. To solve this inconsistency pro-
blem, after squaring I, the instrument P of I?, is estimated by regression
equation (8). Thus, the separate estimation of instruments of / and I*
allows the instruments ([ and ) to be orthogonal to each estimated
residual and hence second-stage consistent estimates can be obtained.

Heteroskedasticity is an inherent property of this moment model.
Therefore, the appropriate model in this study should be one with hetero
skedastic distrubances. Under the condition of heteroskedasticity the least
squares estimators are consistent but do not have the smallest variance
so they are not asymptotically efficient but still consistent under OLS.
This violates hypothesis testing rules of estimator variance consistency.

For notational consistency, define J as a matrix of the explanatory
variables with the instrumental variables and & as a corresponding
error vector of the ith moment function. To derive the feasible GLS
estimators for the Q° moment model parameters, the following assump-
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tions on the distrubance terms and the £ matrix are made:

(9) E(&E,) =0 forall jxsandi=1,2, 3.
(10) Plim (N7'1Z’Z) = X,, exists and a positive nonsingular matrix.
(11) Plim (N"'Z'H) = X, exists and is non-singular.
(12) Plim (N"IQ'E) =0 foralli=1, 2, 3.

Under these assumptions, an OLS regression of Q¢ on { provides a con-
sistent estimator ﬁ" of #;. Also we can obtain a consistent estimators /30
of §; for any i =2, 3, by an OLS regression of &; on Z; where &, is
the regression residual vector (Antle 1983b).

To treat the heteroskedasticity problem, Weighted least squares
procedures can be applied to construct the feasible GLS estimators by
(i) dividing each observation (both dependent and independent variables)
by the standard deviation of the error for that observation and (ii) applying
the usual OLS procedures to the transformed data.

The covariance matrices €; of the moment function errors &;, i = 1,23,
are estimated directly from the regression residuals &, . Let

(13) &= R + Vi, E(V;) =0, for alli.

where V; is assumed to be independently distributed and a, is a parameter
vector conformable to <. Assumptions (9) through (12) and equation
(13) imply that the OLS estmates & of a;, i =1, 2, 3, are consistent (i.e.
E(&2) = Plim(Z,4,)). Therefore, Q,, i=1, 2, 3, can be defined as the di-
agonal matrices of Z,a; and &,,i=1, 2, 3, as the diagonal matrices of 2400
However, £,’s may be negative duc to small sample bias or to sampling
error in the est'mate of f;. To overcome the non-negativity problem and
obtain consistent estimates of the error variances of the moment functions,
the MINOS program can be utilized to impose non-negativity constraints
as described in Antle (1987b). Given the estimated convariance matrices,
feasible GLS estimators for the f; are

(14) pr= ()R E Y, i=1,2,3.

where ¥;, i=1, 2, 3, are vectors of Q ;, £%;, and &};. The GLS estimators are
asymptotically efficient because the covariance matrix of the OLS estima-
tor exceeds that of the GLS estimator by a positive semidefinite matrix
in view of Aitken’s theorem (Theil, p. 238).

Therefore, assuming that the sample in this study is sufficiently large
for the asymptotic properties of the estimators to be valid, the following
NLIV-GLS estimation procedures can be used to obtain consistent, ef-
ficient estimates of the model parameters:

(1) Estimate the optimal instrumental variables for I and I? and
replace I and I? in matrix H with [ and P.
(b) Estimate the mean function of Q¢ and compute the residual
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vector, &,.

(c) Estimate regressions &; = Z,f; + &, and compute the residual
vectors, &, 1 =2, 3.

(d) Estimate a;, ¢ = 1, 2, 3, by using the MINOS program:
min ¢, [£} — Sa]?
s.t, Za,>0.

(e) Transform data sets [Q,; {;] and [&; ;] by dividing by (&)
and (&)'* =2, 3.

(f) Apply the usual OLS procedures to obtain NLIV-GLS estimators
(14).

All hypothesis tests are performed based on the above statistical results
which are derived from the assumption that the NLIV-GLS parameter
estimates are asymptotically normally distributed.

Risk in a Worm Monitoring Program for Processing Tomato
Production

The Sacramento Valley is located in northern California. The Sacramento
Valley area centered in Yolo county produces some 65 percent of the
California processing tomatoes. The survey covered five counties including
Yolo, Solano, Colusa, Sutter, and Sacramento. In this area, planting of
processing tomatoes extends from February to mid-June and harvest is
from July to October.

The Worm Monitoring Program

Recently, the IPM (integrated pest management) Impementation Group
and Department of Entomology (UC Davis) developed a worm monitoring
program for processing tomato production, supported by systematic sam-
pling techniques and in 1984 started the first formal trials on about
2,000 acres of tomatoes to demonstrate to growers its reliability and
economniic feasibility. The worm monitoring program (WMP) specifies a
formal procedure by which growers collect information on pest popula-
tions and spray accordingly. A difference between the WMP and the
conventional pest monitoring method (CPM) lies in worm monitoring
techniques. CPe is based on non-systematic sampling methods such as
visual observations of the pest situations in the fields.

Description of Data and Variables in the Model

A detailed discission of the data and variables is in Park. Here, a brief
description is given to the variables which are used to estimate the moment
models.
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The processing tomato production information collected is two year
non-experimental data (1983-1984) consisting of farm production re-
cords of 21 WMP fields and 85 CPM fields: the WMP fields are the
ones which participated in the university’s worm sampling project; the
CPM fields represent the fields which used non-systematic sampling
techniques such as visual observations of pest situation. The field level
data collection method substantially reduced aggregation problems.

In the following statistical analysis, ten variables are utilized. The
variables include acreage (4), fertilizers (F), irrigation (W), insecticides
(1), worm damage (Q¢), net tomato weight (Q?), and dummy variables.
Several important variables have been omitted due to measurement
problem. Machinery utilization data could not be obtained (either from
written records or memory recall) because agricultural firms use many
different kinds of machinery which are utilized for a variety of operations.
Only a few growers kept labor records (or costs) by field. Thus, most
field-level labor input figures were obtained from a grower’s recall.
However, since the production technology is quite uniform in the Sacra-
mento Valley with respect to mechanization and labor utilization, it is
reasonable to assume that these inputs are used in fixed proportions with
acreage. Information on Worm monitoring labor hours also was obtained
from the grower’s recall so its accuracy at the field level is questionable.
Thus, the data were not used in the econometric model. However, since
the information was believed to be indicative of acreage worm monitoring
activities in CPM and WMP, a simple regression of worm monitoring
hours on a WMP dummy variable (i.e., IN=1 if WMP field, IV=0 other-
wise) was used to test for a mean difference in monitoring hours between
the WMP and the CPM.

Accurate field acreage figures were obtained for 106 processing tomato
fields. Fertilizers were used for starter fertilization and side-dressings.
In general, complete fertilizers were used as starters while most of the
growers used only nitrogen in side-dressings. There were many different
formulations of fertilizers in different units. The original quantity data
were converted into a standardized unit (e.g., Ibs). Irrigation information
was difficult to obtain, since many growers did not keep water use records
in terms of acre-feet. In many cases, water quantities were computed
based on per hour pumping rate (e.g., gallons per hour) and total pumping
hours during the season. Water prices per acre-foot were calculated
by using electricity costs, tax assessments, and water charges. Insecticide
data were obtained from the reports of pesticide treatment and crop
history required by processors and were converted into pounds of active
mgredient. Insecticides are heterogeneous in quality (i.e., effectiveness
and toxicities associated with different active ingredients). Therefore,
quality adjustment is desirable. However, experimental information
necessary for quality adjustment was not available. Market prices could
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be used for adjusting quality, since market prices may be indicative of
quality differences. However, prices reflect other economic phenomena
as well as quality. Therefore, the insecticide variable was used in the
model without quality adjustment. Worm damage data were collected
only for the 1984 season because the tomato commodity group of State-
wide IPM project started the first formal field trials in 1984. Fruit damage
caused by tomato fruitworms and beet armyworms was estimated in the
field according to the sampling technique suggested by the university’s
IPM group shortly before or during harvest from mid-July, 1984 to Sep-
tember, 1984. Net tomato weight accepted by processors is determined
through by quality grading at inspection stations. Grading results are
sent to individual growers and processors. The grading sheets contain
gross tomato weight delivered to the inspection station, paid tomato weight,
and quality records. Thus, accurate net output data for each field were
available from the grading sheets or growers’ summary records. There are
six dummy variables: one is associated with pest monitoring techniques
(IN=1 if WMP field, IN=0 otherwise); there with planting seasons
(D1=1 is early, D2=1 if middle, D3=1 if late, D1=D2=D3=0 other-
wise) ; two outliers (OT 1=1 if Q*>45 tons/acre, 0T2=1 if °<15 tons/
acre, O0T1=07T2=0 otherwise).

Empirical Model Specification

Although many problems associated with choice of functional form re-
main unsolved, quadratic moment models are employed as flexible re-
presentions of output and worm damage moment functions because (i)
there is little a priori information about their functional structures and
(ii) given a data set, Cobb-Douglas or log-linear functions impose a priori
arbitrary constraints on production processes.

The Q¢ moment model is specified as a full quadratic in acreage (4),
fertilizer (#), water (W), and insecticides (I). Three dummy variables-
WMP (IN), mid-season planting (D2), and late planting (D3)-are in-
cluded in linear form by stratifying the data by worm sampling techniques
and by planting seasons. In addition, the Q¢ moment functions contain
two outlier dummy variables (OT1 and 072). The linear-in-parameters
quadratic moment functions are specified as follows:

R
(15) M‘; = ﬂoi + %ﬂlekj
R R

+ (112) 22 By X))

T
+ Z8.X,;
i=1,92,3j=1...,106 R=4  T=>5,
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where j is the j-th processing tomato field; f, is a parameter vector of
the i-th moment function; X;,’s are production inputs—A, F, W, and I;
X.;’s are 5 dummy variables—OT1, 0T2, IN, D2, and D3. For WMP
economic research the moment model of worm damage (Q¢) may be more
important than the Q% moment model because WMP is directly associated
with Q¢ but only indirectly with Q°. The functional specifications follow
those of the Q% moment model. The only differences are in dependent
variable name and dimensions of dependent and explanatory variables. The
worm damage data include 52 field observations for the 1984 season.
Acreage and fertilizer variables are not included in the model becuase there
is little evidence that they ifleunce Q9. Thus, the Q¢ moment model has a
ful quadratic expansion in W and I and is linear in IV, D2, and D3. One
problem with quadratic specifications is that a large number of parameters
must be estimated when there are many inputs. Thus, when the sample
is small, these may be subject to a substantial loss in degrees of freedom.
Another problem is multicollinearity because of interaction terms between
the variables. The above quadratic specifications with the given input
variables, however, were not found to exhibit serious multi-collinearity
while limiting the parameters to a manageable number.

To solve the input endogeneity problem, I and I2 are expressed as
functions of all the variables (but Z, I?, and interaction terms with /) in
the output moment model and input and output prices as follows:!

(16)  (IorI? = (INTERCEPT, 4, W, F. A%, AW, A.F, W2,
W.F, F?, ISP, WP, FP, TMP, MP, HBP, FGP
OT1, 0T2, IN, D2, D3, §)

where ISP is insecticide price; WP is water pricc; FP is fertilizer price;
TMP is tomato price; MP is miticide price; HBP is herbicide price;
FGP is fungicide price; dis disturbance. f and £2 are the fitted values from
the corresponding OLS regression and are substituted for 7 and /2 in equa-
tion (15). "

Derivaties of equations (15) with respect to input & are marginal
impacts of input £ on Mg, i=1, 2, 3. The moment elasticities with respect
to input £ are

(16)  my = [(dM?)[(dX,)] /[ X,/ Mr]
= [ﬂk + %ﬁkxinj]/[Xk/Ma]> 1=1, 2,3.

and can be computed at sample means. This forrmua also is utilized for
estimating the moment elasticities of worm damage.

! Note that in the case of quadratic functional forms interaction terms between [
and X, where X is an exogenous variable, are not nonlinear in the instruments’
residual and thus do not result in inccnsistency.
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Hypothesis Test Statistics

This empirical study requires four main hypothesis tests: (i) there are
systematic relationships between Q® and Q¢ distributions and production
inputs (HI1); (i) WMP and CPM are associated with different distribu-
tions for Q¢ and Q¢(HPZ); (iii) there is a difference in worm monitoring
hours between the WMP and the CPM(HP3); and (iv) a difference in
insecticide use exists between the two pest management technologies
(HP4). In addition, it is hypothesized that planting time results in dif-
ferent mean and risk of Q2 and Q¢ (HP5). These hypotheses are tested
based on the following test statistics.

Under the large sample assumption, asymptotically valid chisquare
() statistics can be used. The y?is constructed in terms of constrained
error sum of squares (CESS,) (i.e., all slope coefficients are zero) and
unconstrained error sum of squares (UESS,) as follows:

(18)  x(K,— 1)=[(CESS; — UESS)[(K,— 1)]/[UESS)]

where i indicates the ith moment, and K; is the number of parameters
of the sth moment. The distribution has (K,—1) degrees of freedom.

The Q° and Q¢ moment models and equation (12) all contain 3
dummy variables (i.e., IV, D2, and D3) associated with HP2, HP4, and
HP5. The IN coefficients are the mean differences in the Q¢ and Q¢ mo-
ments and the insecticide use between WMP and CPM, while the coef-
ficients of D2 and D3 represent the mean differences between the planting
seasons. Testing the significance of the dummy variables is, in fact, testing
HP2, HP3, and HP4.

It is postulated that the monitroing hours (MH) are given by

(19)  MH = GUINTERCEPT, IN)

The coefficient of WMP variable (IN) is the mean difference in monitor-
ing hours between the two pest control techniques and is associated with
the test for HP4.

To test the above hypotheses associated with individual dummy
variables, asymptotic t-statistics are defined in terms of the ratio of dummy
variable’s coefficient (i.e., mean difference of a dependent variable) and
its standard error.

Empirical Results

This section discusses the role of instrumental variables under the condi-
tion of input endogeneity by comparing the NLIV-GLS and GLS estimates,
the relevant hypothesis test results based on the NLIV-GLS estimates of
the model parameters, and the marginal impacts of production inputs
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TABLE 1 NLIV-GLS PArRAMETER EsTiMATES oF QUTPUT MOMENTS
Moments
Var.
name First Second Third
B1 t-ratio B2 t-ratio B3 t-rario

IN —.0887 —1.0856 —.0002 —.0188 —.0177 —2.4800***
D2 —.0391 -—.9184 —.0096 —.8736 —.0078 —1.1013
D3 —.1728 —-2.5856** —0019 —.1163 0117 1.5547*
Ve 19519%%* 258.47%%x* 778.5% %%

Note ail tables for: *indicates significant at the 10 percent significance level;
** indicates significant at the 5 percent significance level; *** indicates significance
at the 1 percent significance level.

TABLE 2 GLS ParameTER ESTIMATES OF QuUTPuT MOMENTS

IN 1372 —2.1877** 419 2.3972** .0309 3.0228***
D2 —.1960 -—2.9176%** 0077 4137 -—.0418 —1.3253*
D3 —. 1268 —2.1492%*  .0409 2.7726%** —.0019 —.3002

7 5819.3%** 614.32%** 298.32%**

TABLE 3 NLIV-GLS PArRAMETER ESTIMATES OF WORM DAMAGE MOMENTS

IN —.6712 —1.9915** —.3155 -—-1.1835 .0277 .0816
D2 .5549 1.9405%* 1279 6101 —.0506 —.2017
D3 1.0011 2.3643%#* .3809 1.1500 .1940 4761
x? 1156%** 1078.7%** 650.11***

TABLE 4 GLS PARAMETER ESTIMATES OF WORM DAMAGE MOMENTS

IN —.1405 —.4772 —.0455 —.2662 1514 .5384
D2 2925 1.1449 .0651 .5093 —.0313 —.1477
D3 —.3350 —.8492 —.0780 —.3293 -—.1538 —.4122
7 230.48%** 53.769%** 2.9037

TABLE 5 NLIV-GLS Mowment ELasticiTies oF QuTPuT

Moment elasticities
First t-ratio Second  t-ratio Third t-ratio
A .3333 1.4717# 1.0558 .9955 —25.141 —1.2745%*
F .5593 2.5542% %% 1.2529 1.1366 —16.068 —.6981
w .4986 2.4934%** —.9549  —.7555 —17.767 —.8286
I .3607 3.7575%** —.8973 —1.2932%* —26.154 —4.2586%**
TABLE 6 GLS MoumenT ELasticrties or Qurpur

A .6987 2.7246%% —3.4607 —2.0938%¢ —6.2843 —.0691
F .2938 1.4889* —.6933 —.7402 180.4300 2.4436%**
w 2355 1.2494* 1.5088 1.0272 —143.0600 -—1.2947%*
1 —. 0116 —.2238 —.5336 -—1.6632%** 47728 —.2947




Econometric Modeling of Pest Management Technology 211

TABLE 7 NILY-GLS MoMENT ELasTICITIES OF WORM DAMAGE

w —.3501 —1.5802* —.5745 —1.3348* .2869 .1193
—.4150 —3.3652%** 8306 —3.2846%** —3.9972 —2.5515%**

et

TABLE 8 GLS MoMeNT ErasticrTies oF WorM DAMAGE

w —1.1364 —4.3645*** —.3989 —.7226 —2.3633 —.5028
.0920 .9452 4396  1.6036* 5421 .5378

-

on the Q° and Q¢ rioments. Here, the dummy variable estimates and
moment elasticities are presented in Tables 1 through 4.

First, there are sign differences in the first moment elasticities of Q°
and Q¢ with respect to insecticide input. Itis believed that insecticides have
a positive impact on the mean of output but negative effect on the mean
of worm damage. However, as presented in tables 6 and 8, the GLS es-
timates showed a negative marginal product of insecticide input and a
positive marginal impact on worm damage. These results are consistent
with the Carlson’s observation (1984) that it is quite possible to estimate
negative marginal productivity of pesticides due to input endogeneity.
Second, the significance of the moment elasticities of Q° and Q¢ with
respect to insecticide input differ: in the GLS run all the moment elastici-
ties of Q2 and Q7 with respect to I expect for those of the second moments
of Q2 and Q¢ are insignificant at all conventional significance levels; those
obtained by the NLIV-GLS all are significant. Third, there is a difference
in significance of the IN variable coefficients between the NLIV-GLS and
GLS runs. As seen in Tables 1, 2, 3, 4 all the IN’s in the GLS run of the
output moment functions arc much more significant than those in the
NLIV-GLS estimation but the GLS IN’s of the worm damage moment
model are much less significant. In addition, there are differences in
the x* values between the NLIV-GLS and GLS. All the NLIV-GLS x*
values except for that of the Q* second moment are much lower than those
for the GLS. The above different GLS results from those of the NLIV-GLS
can be attributed to estimation bias owing to the input endogeneity pro-
blem in the moment models.

The x> tests accepted, at the 1 percent level, the hypothesis that
there are systematic relationships between inputs and the first three
moments of the output and damage distributions. The moment elasticity
estimates suggest that the magnitude and direction of marginal impacts
of production inputs on the output distribution may depend on many
factors such as crop, climate, and soil conditions. It has been found in
other studies that water and pesticides are risk reducing inputs, and
that fertilizer is a risk-increasing input (Carlson 1979, Just and Pope 1978).
The results indicate that water and insecticides decrease output variance
but increase downside-risk;: fertilizer increases the variance and down-
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side risk of output, and thus is risk-increasing. For worm damage, water
reduces the mean and variance while insecticide input reduces the mean,
variance, and positive skewness of worm damage. These results for the
insecticide input support the general view that pesticides can be used as
an insurance input.

The empirical results show: (i) the WMP uses the same amount of
insecticide as the CPM; (ii) the WMP increases pest monitoring labor
but the incremental cost per acre is very small relative to average gross
income per acre; (i) no mean output difference exists between the
WMP and the CPM at the 10 percent significance level; (iv) the evidence
on the effect of the WMP on output ris, is inconclusive, due to the small
sample size; (v) the WMP reduces the mean and variance of worm
damage (iv) the mid- and late-season plantings not only increase the
mean worm damage but also decrease the mean output, supporting
the field observation that the early planting allows growers to avoid
serious worm damage and reduce insecticides use.

Taken together, the above results imply that the WMP results in a
significant reduction in mean worm damage and worm damage risk in
tomato production without substantially increasing other production
costs. :

Conclusions

This paper develops a nonlinear instrumental variable-generalized least
squares technique (NLIV-GLS) under the conditions of input endogeneity,
nonlinearity in endogeneous variables, and heteroskedasticity. This eco-
nometric estimation technique is applied to risk analysis of the worm
monitoring program for processing tomato production. The empirical
results show that, under the existence of input endogeneity, instrumental
variable approach is a useful method to obtain consistent estimators.

An important limitation of the empirical study is the use of a rela-
tively small sample size which causes the instability of the moment models.
Another limitation is the use of a static model since detailed data by growth
stage are not available. However, dynamics (i.e., multi-stages in plant
growth over a single production period) and risk are an important joint
consideration in this study.

Future research should utilize larger and more complete data sam-
ples. Also, future research should explicitly model dynamics and risk
jointly to further explore an agricultural firm’s behavior under produc-
tion dynamics and uncertainty.

REFERENCES

Anderson, Jock R., John L. Dillon and B. Hardaker, Agricultural Decision Analysis,



Econometric Modeling of Pest Management Technology 213

Ames: The lowa state University Press, 1977.

Anderson, Jock R., “Sparse Data, Climate Variability, and Yield Uncertainty in
Response Analysis.”” Amer. F. Agr. FEcon. 56(1974): 77-83.

Antle, J. M., “Sequential Decision Making in Production Models,” Amer. J. Agr.
Econ. 65(1983a): 282-290.

, “Testing the Stochastic Structure of Production: A Flexible Moment-
Based Approach,” 7. of Bus. and Econ. Stat. 3(1983b): 192-201.

, “Incorporating Risk in Production Analysis,”” Amer. J. Agr. Econ. 65
(1983c): 1099-1106.

Antle, J. M. and W. J. Goodger, “Measuring Stochastic Technology: The Case
of Tulare Milk Production,” Amer. F. Agr. Econ. 66(1984): 342-350.

Carlson, G. A., “A Decision Theoretic Approach to Crop Disease Prediction
and Control,” Amer. 7. Agr. Econ. 52(1970): 216-223.

Calson, G. A., “Risk Reducing Input Related to Agricultural Pests,”” In Risk
Analysis for Agirucltural Production Firms: Concepls, Information Reguirements
and Policy Issues, Department of Agricultural Experiment Station, Univer-
sity of Illinois at Urban-Champaign, 1984: 164-175.

Day, R. H., “Probability Distributions of Field Crops,” 7. Farm Econ. 47(19653):
713-741.

Feder, G., “Pesticides, Information, and Pest Management under Uncertainty,”
Amer. J. Agr. Econ. 61(1979): 97-103.

Farnsthworth, R. L., “A Decision Theoretic Analysis of Alternative Pest Control Strate-
gies: A Case Study of Cotton Growers in California,”” Unpublished Ph.D. Dis-
sertation. University of California, Berkeley, 1980.

Fuss, M. and D. McFadden, eds. ““Production Economics: A Dual Approach to Theory
and Applications,” New York: North-Holland, 1978.

Hausman, Jerry A., “Specification and Estimation of Simultaneous Equation
Models,” in Zvi Griliches and Michael D. Intriligator (ed), Handbook of
Econometrics, New York: North-Holland, 1983: 408-413.

Heady, Earl O., “Economics of Agricultural Production and Resource Use,”” New York:
Prentice-Hall, 1952: Chap. 15.

Just, R. E. and R. D. Pope, ‘‘Stochastic Specification of Production Functions and
Economic Implications,” 7. of Economeirics, 7(1978): 67-86.

, “Production Function Estimation and Related Risk Considerations,”
Amer. F. Econ. 61 (1979): 277-284.

Kelejian, Harry H., “Two-Stage Least Squares and Econometric Systems Linear
in Parameters but Nonlinear in the Endogenous Variables,” 7. Amer. Stat.
Ass. 66(1971): 373-374.

Kmenta, Jan, “Elements of Econometrics, McMillan Publishing Co. Inc., 1971.

Lazarus, W. F. and E. R. Swanson, *“Insecaticide Use and Crop Rotation under
Risk: Rootworm Control in Corn,”” Amer. J. Agr. Econ. 65(1981): 738-747.

Menezes, C., G. Geiss and J. Tressler, “Increasing Downside Risk,”” Amer. Econ.
Rev. 66(1980): 904-910.

Moffitt, L. J., Thomas M. Burrows, John L. Baritelle and Vahram Sevacherian,
“Risk Evaluation of Early Termination for Pest Control in Cotton,”
Western J. of Agr. Econ. 9(1984): 145-151.

Roumasset, J. A., “Rice and Risk: Decision Making Among Low-Income Farmers,”
New York: North-Holland 1976.



214 Journal of Rural Development

Taylor, C. R., “A Flexible Method for Empirically Estimating Probability Func-
tions,”” Western J. of Agr. Econ. 9(1984): 66-76.

Theil, Henri, *“Principles of Econometrics,” John Wiley and Sons, Inc., 1971: p- 238.

Yassour, Joseph, David Zilberman and Gorden C. Rausser. “Optimal Choices
among Alternative Technologies with Stochastic Yield,” Amer. 7. Agr.
Eeon. 63(1981): 719-723.



	Introduction
	Theoretical Considerations
	Pesticide Input Endogeneity
	Moment Model Specification and estimation
	Risk in a Worm Monitoring Program for Processing Tomato Production
	The Worm Monitoring Program
	Description of Data and Variables in the Model
	Empirical Model Specification
	Hypothesis Test Statistics
	Empirical Results
	Conclusions
	REFERENCES



