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OPTIMUM USE OF HERBICIDES IN SPRING
PEAS (PISUM SATIVUM)*

KWON TAE-JIN**
DOUGLAS L YOUNG***

. Introduction

While dry edible peas and lentils are a relatively minor crop
nationally, they are an important economic and rotational crop in the
inland Pacific Northwest of the United States. Dry peas and lentils
grossed Washington and Idaho growers $56 million in 1991 (11, 18).
From a grower's perspective, dry peas and lentils are crucial rotational
crops in sustaining high winter wheat yields in the Pacific Northwest.
Continuous winter wheat is plagued with root diseases and winter
annual grass weeds, which are both suppressed in legume rotations. In
a recent 6-year field trial, winter wheat grown after dry peas, under
conservation tillage conditions, out yielded winter wheat after spring
wheat unaer similar conservation tillage conditions by 21% (22).
Although peas and lentils are extremely beneficial to the
rotation, effective and affordable weed management in these crops is
the greatest challenge to the success of this rotation. The difficulty
relates to herbicide availability, efficacy, and cost. In 1988, growers
lost the use of dinoseb, an effective, broad spectrum, low cost
broadleaf herbicide, which was widely used by pea and lentil growers.
Dinoseb replacements are few in number, of limited spectrum, and
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generally more costly. As a result, growers often need to use three or
more herbicides to control the spectrum of weeds encounted.

The ideal herbicide regime would be excessively expensive,
given the relatively low value of the pea crop (2). Even with a modest
herbicide program, these inputs cost $36/ac or 24% of the total
variable costs for the production of a pea crop that has netted an
average of -$88/ac for the past six years. However, survey data from
the region indicate that yield losses would range from 35 to 62% if no
herbicides were used. Even with current herbicide use, yield losses
from herbicide injury range from 7 to 13% and 4 to 9% is lost from
swathing to dry weeds for harvest.’

Despite the challenges faced in developing effective weed
management in peas and lentils, little work on weed control in dry
peas and lentils has been published. Exceptions include Boerboom
(3), Miller et al. (14), Stephens and Ogg (17), Prather et al. (16),
Whitesides and Swan (20), Hornford and Drew (9), and Wilkins et al.
(21). No economic analysis on weed management for dry peas or
lentils has been reported since 1970, but growers would benefit from
a decision model that optimizes profits through use of appropriate
herbicide inputs. However, several unique challenges are associated
with developing a bioeconomic model for weed management in dry
peas that are often avoided in other models.

First, the primary herbicides used are soil active, applied either
pre-plant incorporated or preemergence. These herbicides cannot be
effectively replaced with postemergence herbicides. Therefore,
applications made in early spring are before the eventual weed
pressure in known and are prophylactic in nature. Growers are unable
to use observed weed pressures as an indicator of profitable herbicide
rates. Several classifications of herbicides must also be handled with
such a model. Although there are relatively few herbicides labeled for
peas, they are applied as pre-plant nonselective herbicides, pre-plant
incorporated broadleaf herbicides, pre-plant incorporated grass
herbicides, premergence broadleaf herbicides, postemergence
broadleaf herbicides and postemergence grass herbicides. In addition,
many of these herbicides have marginal efficacy on some key weed
species in peas, such as mayweed chamomile (16). Thus, model

* Personal communication, Fuerst, P., May 1993.
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design will require careful consideration of tank mixes and sequential
treatments to provide control of the broadleaf spectrum of weeds.

As a minor crop, peas and lentils are not a major target for new
herbicide development by chemical companies. Consequently, research
to enhance effective and profitable use of available herbicides is
particularly important to growers. The urgency of effective weed control
for dry peas and lentils in the Pacific Northwest has increased with the
approaching deadline, by the end of 1994, for phasing in soil conserving
farm plans in the highly erodible Pacific Northwest croplands where
these crops are grown. Transition to conservation tillage to implement
these farm plans generally increases weed management requirements in
the inland Pacific Northwest production region (12).

The objectives of this paper are to develop a bioeconomic
decision model for weed management in dry edible peas and to find
profit maximizing herbicide rates under both conventional and
conservation tillage. Nonlinear multiple regression method and
nonlinear programming algorithm were used to analyze the models.

fi. Data

The bioeconomic weed management model is based upon six years of
data from field experiment in the Washington-Idaho Palouse at a site
near Pullman, Washington. The USDA-ARS Integrated Pest
Management (IPM) project in the Washington-Idaho Palouse region was
developed to assess the appropriate level of chemical weed control for
conservation and conventional tillage systems in the area. Complete
descriminations of the design, procedures, and selected spring peas
results of the IPM experiment are presented in Boerboom et al. (4) and
Young et al. (22). A brief summary of the experiment follows. Two crop
rotations were examined, one containing two years of winter wheat and
one year of spring wheat, and the other one year each of winter wheat,
spring barley, and spring peas. Each crop in each rotational sequence
was grown every year of the experiment. Three levels of chemical weed
management were chosen to correspond roughly to 90%, 70%, and 50%
of the recommended label rates of utilized herbicides. Exact rates and
combinations of herbicides within these levels were determined annually
by the project's weed scientists. The experiment attempted to reflect
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current farm production methods by using full-size farm machinery on
relatively large subplots measuring 12.2 m by 45.7 m. The research site
was located five km northwest of Pullman, WA and had been farmed
nine years previously in no-till small grains.?

The density (plants/m®) for all weed species was counted two
times each year. Spring weed counts were recorded before
postemergence herbicide applications, and summer weed counts were
taken before crop harvest. Every weed species was counted in three 1-
m’ quadrates per subplot in both periods. Weed biomass of every
species was measured from the same three 1-m? areas where weed
species were counted prior to crop harvest each year.

All yield data were adjusted to reflect the typical 5% level of
chaff and moisture for marketed dry peas in the region.

. Modeling

A bioeconomic model links biological relationships to an optimizing
economic model. In this study, the bioeconomic model is developed in
three steps (13). First a system of weed survival functions is specified to
determine weed density levels after herbicide applications. Second, a
yield response function is specified to describe the relationship between
spring pea yield and aggregated surviving weed density and content of
organic matter, and tillage type. Finally, the estimated results are
incorporated into a profit function to determine profit maximizing rates
for six herbicide types. Optimal herbicide rates are conditional upon the
state variables included in the biological and economic relationships.
These state variables include such factors as spring weed densities, soil
moisture, tillage type, preceding crop, herbicide prices, and expected
crop prices. If the decision model is to be operational, all state variables
must be known or have formulated expectations at the time the weed
control decision is made.
The weed survival functions are specified as:

6
WD, = by+b,SWD+b,WD, , ,+b,SM+ X cH+aTIL i=1,2,3 (1)
=i

* Refer to Journal of Rural Development, vol. 16(2) on the IPM experimental design.
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where WD, is weed density (no./m?) of i-th weed subgroup in
July, SWD; is spring weed seedling density (no./m*) of i-th subgroup,
WD, , is weed density (no./m?) of i-th weed subgroup in the July of
previous season, SM is spring soil moisture of the top 12 inches (%),
H;'s are application rate (proportion of maximum label rate) of j-th
herbicide type (H, = pre-plant nonselective herbicides, H, = pre- plant
incorporated broadleaf herbicides, H, = pre-plant incorporated grass
herbicides, H, = preemergence grass herbicides, H; = postemergence
broadleaf herbicides, and H, = postemergence grass herbicides), TIL
is a binary variable (0 or 1) for tillage system (TIL = 1 for chisel
plow, TIL = 0 for moldboard plow), and a, b's, and c's are estimated
coefficients. Over 40 weed species recorded in the IPM experiment
over six years were classified into three subgroups: summer annual
grasses (WD,), winter annual grasses (WD), and summer annual
broadleaves (WD) as listed in Table 1. Coefficients b, and b, are
expected to be positive. Higher spring seedling densities of weed type
i should increase mid-summer density of weed type i, other factors
equal. And higher mid-summer densities of weed type i in the
previous season should increase weed density in the following season,
other factors equal. Coefficients ¢/'s are expectd to be negative for
herbicides intended to control weed type i. Coefficient a is expected
to be positive indicating that conservation tillage favors weed growth

TABLE 1 Major Weed Species in the Spring Peas

Common name Scientific name Average spring weed density
plants/m®  Percentage®

Summer Annual Grass

Wild oat Avena fatua 20.5 98.7
Summer Annual Broadleaf

Henbit Lamium amplexicaule 26.4 55.6
Lambsquarter Chemopodium album 12.1 255
Field penny cress Thlaspi arvense 3.6 75
Gromwell Lithospermum arvense 22 4.5
Winter Annual Grass

Voluntary wheat Triticum aestivum 1.0 971

* Average of mean density (plants/m?) over six years and 24 subplots.
" Percent of weed density within each subgroup
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relative to conventional tillage. No prior signs are hypothesized for b,
which indicate the influence of soil organic matter on mid- summer
weed density in spring peas.

A total of eight herbicides were used on spring peas over the six
years of the IPM experiment. These herbicides were categorized into
six subgroups as listed in Table 2. An index of "effective application
rate" was developed to aggregate different type of herbicides for H,
and H,. An index of 1.0 was given to the manufacturer's label for all
herbicides in each subgroup. Accordingly, applications below the
label rate, received an index of k equal to the proportion of the label
rate so that 0<k<1. Then each herbicide was weighted by an
"efficacy index" (EI,), 0 <EI, <1, within the subgroup (see Table 2).
The "efficacy index" was assinged based on the relative performance
of the particular herbicide within the subgroup. The index of
"effective application rate" for a specific herbicide in a subgroup
equaled k x EI,. These effective application rates were summed to
obtain the aggregate application rate (H;) for a herbicide subgroup.

Each weed subgroup competes not only with the crop but with
the other weed subgroups. All the weed subgroups are also affected
by the same weather and other external influences within a given year.
This means that the statistical error terms in the different weed
survival functions for a crop are correlated with each other within the
same time period, while they are uncorrelated in different time

TABLE 2 Classification of IPM Herbicides in Spring Peas

Crop/Herb. type* Herbicide name Yearsused Labelrate Weed mgt. costs ($/ac) Efficacy
(peracre) Herb. Appl. Total Index

H, (Non-selective) Glyphosate ~ 1987-90  0.38lbae 615 450 1065 1.0

H, (PPIBL) Ethalfluralin =~ 198391  0.751bai 901 225 1126 10
H; (PPI GR) Triallate 1988-91  1.25lbai 1233 225 1458 10
H, (Preemer. BL) Dinoseb 1986 300bai 1671 450 2121 10

Metribuzin 198791  038lbai 1365 450 1815 10
H, (Postemer. BL) MCPA 1988-90  0.25lbae 103 450 553 10
H, (Postemer. GR) Barban 1987 038lbai 792 450 1242 06

Diclofop 1986-87 1.00lbai 20.77 450 2527 10
* BL = Broadleaf weeds. GR = Grass weeds
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periods. To test the dependency in the error stucture, the Breusch-
Pagan Lagrange Multiplier test (5) was used.* As a test result, the
alternative hypothesis was not accepted at the 5% significance level,
consequently, contemporaneous correlation does not exist. Thus, least
squares estimator is fully efficient and there is no need to employ the
seemingly unrelated regression estimator (10).

Two "damage functions" have been used to represent the effect
of weed density on crop yield: logistic and hyperbolic functions.
Cousens (7) compared these models in winter wheat with a single
weed species, but not with multiple weed species. A Mitscherlich-
Baule yield response function is favored over other generally used
functional types to show the technical relationship between crop yield
and soil fertility (Frank, Beattie, and Embleton). The function has
sufficient flexibility to accomodate factor substitution and imposes
plateau growth. In this study, a modified Mitscherlich-Baule
production function was combined with both logistic and rectangular
hyperbolic damage functions. The yield function with logistic damage
was specified as:

m

Y= bl(lA-e"’:OM) [1- . ] +aTIL. @)

+e-(i+jTWD)

Variables shared with the survival functions in equation (1) are as
defined above. Y is crop yield (kg/ha), OM is content of organic
matter in-the soil (%), b, is maximum potential crop yield with
nonlimiting organic matter, and no weeds. The parameter m is
maximum proportionate yield damage at infinite weed density and j is
a weed competition coefficient. Parameters i, j, b,, b,, a, and m are
regression coefficients to be estimated. The parameter m was
restricted to 0.5 by prior information. The maxium yield loss with no
herbicide is known 50% in the study area.® Parameter estimates for b,
and b, are expected to be positive consistent with a positive expected

* The null hypothesis (Hy) is 0,, = 0,5 = 0,; = 0, and the alternative hypothesis (H,) is
"at least one covariance is nonzero”. Under H,, the Lagrar(ljge multipier statistic(A)

has an asymptotic ¥’ - distiribution with 3 degrees of freedom in this case. The A

= 0.724 was smaller than the critical value from a Xg; - distribution for the 5%

significance level. -

Personal communication, Pat Fuerst, May 1993.
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yield correlated with a positive expected yield correlated with higher
organic matter. Estimates i and j are expected to be negative and
positive, respectively, to generate the characteristic reverse sigmoidal
shape of the logistic damage function (12). No prior sign was
hypothesized for the tillage coefficient.

The total weed competition index, TWD (weighted no.
weeds/m?), is calculated from weighted predicted weed survival levels
over subgroups:

TWD = 2.37(WD,) + 3.19(WD,) + 1.00(WD,) 3)

in spring peas. The total weed competition index represents the
overall competitive ability of all weed species with the host crop. A
competitive index, 1.0, is given to a summer annual broadleaf weed as
a standard weed unit for spring peas. In this study, the weight
assigned to other weed subgroups is proportional to the average
biomass of weeds in that subgroup relative to the average biomass of
summer annual broadleaves. The biomasses were based upon biomass
measurements of all weeds by species prior to harvest over the six
years of the IPM experiment. The WD, for each weed group are
predicted from equation (1). Survey-based subjective weights were
also examined for use in equation (2). Twelve local weed scientists
and fieldmen were asked to assign competitive capacities on a
positive scale centered at 1.0 for a common benchmark weed for a
subjective weights in terms of goodness of fit and significance of
weed competition coefficients in equation (2) and (4). Consequently
only the results based on the objective weighting in equations (2) and
(4) as used in the subsequent analysis.

The specification of the yield response function with
rectangular hyperbolic weed damage is:

iTWD
100(1+iTWD/})

Y = by(1-e™oM) [1- ]+aTIL. @

where common variables with (2) are defined as above, j is the
maximum percentage yield loss as weed survival approaches infinity,
and i is the proportionate yield loss as weed survival approaches zero.
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The symbols b,, b,, and c are estimated regression coefficients.
Parameter estimates for b,, and b, are expected to be positive
consistent with a positive expected yield correlated with higher
organic matter. Both estimates i and j are expected to be positive to
generate the characteristic rectangular hyperbolic shape of the damage
function (12). No prior sign is hypothesized for the tillage coefficient.

SHAZAM (19) was used to estimate the nonlinear yield
response functions. There is no guarantee that the estimation process
for a nonlinear model will converge to a set of coefficients with a
given set of starting values. If it converges, there is no way to identify
whether it is a local or global optimum. Therefore, the model was
reestimated with different starting points to verify that a global optima
had been achieved. All optima were stable based on these procedutes.

A nonnested hypothesis’ testing procedure is required to find
appropriate model specification, since these are not nested. A P-test
(8) was used to test these nonlinear yield models.

The profit functions for this problem can be written as:

7 = PY(H) - P,H-AC(H)-OC (5)

where 7 is net returns over total costs ($/ha), \A/(ﬁ) is the predicted
yield (kg/ha) from equation (4), H is the vector of herbicide
applications (proportion of label rate), P is crop price ($/kg), P, is
herbicide prices ($/label rate/ha), AC(H) is herbicide application cost
($/ha) which is a function of the herbicides applied, and OC is other
costs ($/ha). Other costs include land and miscellaneous fixed costs,
operator labor, fertilizer, machine operations, and seed, but exclude a
charge for management (12, 15).

The herbicide price ($/label rate/ha) for each herbicide subgroup
was based on a frequency-weighted average of the prices of herbicides
within that subgroup used over the six years of the IPM experiment.
Average application cost ($/ha) for herbicide types were computed on
the same frequency-weighted basis as used for herbicide type products.

An objective of this study was to find profit maximizing herbicide
rates subject to specified on WD;'s, TWD, OM, and H;'s. The MINOS
nonlinear programming algorithm within the GAMS software package
(6) was used to solve this problem involving maximization of a
nonlinear profit function subject to inequality constraints.
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IV. Results and Discussion

Table 3 presents the three estimated weed survival functions.

TABLE 3 Estimated Weed Survival Coefficients for Four
Weed Subgroups in the Spring Peas

ab
Variables® Weed Subgroup
WD, WD, WD,
Constant 23.57* -0.32¢ 21.79**
(9.19) (0.17) (5.30)
SWD, 0.66** -9 0.08**
(0.04) (0.02)
HWD, 0.06 0.05** 0.35*
(0.06) (0.01) (0.14)
SM - 0.02* -
(0.01)
H, - -0.32%* -
0.12 -
H, -27.01*%* - ( )
(9.67)
H, - 27.65**
7.48
H, -33.83%* - ( )
(10.90)
TIL 8.08* 0.31** -
(3.09) (0.13)
Log of Likelihood -502.94 - 88.36 - 546.59
Adj. R* 0.86 0.18 0.30

* Weeds were categorized as summer annual grasses (WD), winter annual grasses
(WD,), and summer annual broadleaves (WD;).

® 4+, * and ** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively. Standard errors are in parentheses. Variables are defined in the text.

© SWD, = weed seedling density (plants/m?) in the spring of weed subgroup in the
corresponding column, H; = pre-plant nonselective herbicide, H; = pre-plant incorporated grass
herbicide, H, = premergence broadleaf hembicide, Hy = postemergence grass herbicide, TIL =
binary variable for tillage (TIL = 1 for chisel plow).

¢ A dash indicates the variable was excluded because estimated coefficient had low t-
value (less than 1) in earlier models which included all relevant variables. Blank entries indicate
that the variable was excluded because it was not relevant to the particular weed type.
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Spring weed density (SWD),) coefficients for summer annual
weeds have expected positive signs and are statistically
significant at the 1% level, while not significant for winter annual
weeds. Clearly, spring weed seedling counts appear to be a good
indicator for summer annual weeds, other factors equal, of mid-
summer weed survival of summer annual grasses (WD,) and
summer annual broadleaves (WD) for spring peas in the region.
Lagged mid-summer weed density (HWD;,,) coefficients have
expected sings and are statistically significant for winter annual
grasses (WD,) and summer annual broadleaves (WD,), while not
significant for summer annual grasses (WD,). Compared to three
weed types, spring weed density is more important indicator for
WD,, while lagged mid-summer weed density is more important
for WD, and WD,. Soil moisture has positive sign for winter
annual grasses, but it is not significant for summer annual weeds.
Pre-plant nonselective herbicide (H,) were significant at the 1%
level in predicting survival of WD,, but were not significant for
WD, and WD,. H, significantly suppressed winter annual grasses.
Pre-plant incorporated broadleaf herbicide (H,) were not
significant for WD,. Pre-plant incorporated grass herbicide (H,)
helped control WD,, but not WD,. Preemergence broadleaf
herbicide (H,) were significant for summer annual broadleaves.
Postemergence broadleaf herbicide (H,) were not effective to
control summer annual broadleaves. Postemergence grass
herbicide (H,) significantly reduced the summer annual grass
population, but not winter annual grass weeds. As expected,
chisel plowing (TIL=1) increased (relative to conventional tillage)
mid-summer weed populations of grass weeds, but not broadleaf
weeds.

Table 4 compares maximum likelihood estimates (MLE) of
logistic and rectangular hyperbolic spring pea yield response
functions as specified in (2) and (4). The value of m was restricted
to 0.5 in this study. This value for m was found from the survey
results of maximum pea yield losses in the study area.® Both
logistic damage-yield response model and rectangular hyperbolic

¢ Personal communication, Pat Fuerst, May 1993.



210 Journal of Rural Development 17(1994)

TABLE 4 Estimated Yield Response Functions in Spring Pea

Logistic Model (m = 0.5) Rectangular Hyperbolic Model

Parameter® Estimate t-ratio  Estimate t-ratio
b, 3392.40 5.73 2886.90 8.31
b, 0.71 2.59 0.73 2.61
i -0.91 -0.82 0.14 1.74
j 0.01 2.24 104.93 0.98
a 258.86 2.30 257.88 2.41
Log of Likelihood -735.93 - 736.01

Total obs.* 96 96

* Parameters are defined in text following equations (2) and (3).
" Total 24 observations of 1990 were not included in the estimation of yield
response function because severe yield losses were caused by disease.

model were not rejected at the 5% level by the P-test (8). All
estimates of the logistic function have expected signs and are
statistically significant at the 1% level except i. Estimates of the
rectangular hyperbolic funcion have expected signs and statistically
insignificant at the 5% level for i and j. Maximum predicted yield
with logistic model at nonlimiting organic matter and weed-free
conditions is 3392 kg/ha for spring peas with conventional tillage.
This potential yield exceeds the average yield of six years of
conventional tillage spring peas in the IPM experiment by 40%.
Chisel plow spring peas had predicted potential yields of 3651
kg/ha or 8% higher than under conventional tillage.

In accordance with economic theory, profit is maximized where
all marginal value products (MVP's) equal their marginal factor costs
(MFC's). In this problem, the MVP represents the change in profit per
hectare attributable to using one additional lebel rate of a herbicide
type, other factors constant. The MVP is conditional upon the
“starting value" or current herbicide use rate. The MFC represents the
addition to costs per hectare, namely the constant price and
application cost per unit, of using one additional label rate of a
herbicide type. The estimated MVP and MFC of herbicides evaluated
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at the IPM experiment average herbicide rates are shown in Table 5.
The MVP of pre-plant nonselective herbicides (H;) and preemergence
broadleaf herbicide (H,) are lower than their prices (or MFC's), but
those of pre-plant incorporated grass herbicide (H;) and
postemergence grass herbicide (H,) exceed their prices (or MFC). The
results indicate increasing H, and H, herbicide rates above those used
in the IPM experiment would boost profit assuming current costs,
specified crop prices, and weed densities and other state variables at
their means. Pea price would have to be increase from $0.20/kg
($9.16/cwt) to $0.36/kg ($16.34/cwt) to justify the average rate of
premergence broadleaf herbicide (H,) applied in the IPM experiment. On
average, broadleaf herbicides appear to have been used at economically
excessive rates, but economically lower rates for grass herbicides in the
IPM experiment.

Pre-plant nonselective herbicide (H,), pre-plant incorporated
broadleaf herbicide (H,), preemergence broadieaf herbicide (H,), and
postemergence broadleaf herbicide (H;) were not recommended for spring
peas grown under conservation tillage. Instead, higher rates of pre-plant
incorporated grass herbicide (H;) and postemergence grass herbicide (Hy)
were recommended to maximize profit. With optimal herbicide rates, net
revenues over total costs are significantly increased compared to those

TABLES5 Comparison of Estimated Marginal Value Product (MVP)
and Marginal Factor Cost (MFC) for an Additional Herbicide
Application at Label Rate. Evaluated Using the Means of
Herbicide Use and Other Variables in the IPM Experiment

Herbicide Subgroup
MVP/MFC H, H, H, H,
MVP* 0.36 45.68 2513 57.21
MFC® 26.32 36.03 44.85 53.08
Minimum Required Pea Price
($/kg) for Additional Herb. 14.59 0.16 0.36 0.19

* MVP assuming market price of spring pea is $0.20/kg ($9.16/cwt).

* MFC is the weighted average local price of herbicide and application costs per
acre in herbicide group Hj as of 1991.

¢ Minimum pea price required to make an additional application of a full labeled
rate profitable beyond IPM average application.
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from using average IPM experiment rates in the Table 6.

The bioeconomic weed management models were tested by
simulating how optimal herbicide rates responded to changes in
spring weed seedling densities, crop prices, herbicide prices, and
herbicide application constraints. State variables vary according to

TABLE6 Comparison between Optimal and IPM Average Herbicide
Application Rates and Profit for Winter Wheat Affected by
Preceding Crop and Tillage Systema

Herb.(l.r.)/

Yield (kg/ha)/ Conservation tillage Conventional tillage
Profit ($/ha)

Optimal Hi's: Modeled

H, 0.0 0.0

H; 1.0 1.0

H, 0.0 0.0

H, 0.7 0.1

Pred. yield 27275 2445.0

Pred. profit® -93.1 -142.7

IPM Avg. Hi's: Simulated with Model

H, 0.7 0.0
H; 0.8 0.8
H, 0.6 0.6
H, 0.2 0.2
Pred. yields 2592.2 2432.6
Pred. profit -145.8 -176.1
Actual yield’ 2275.5 2100.4
Actual profit? -209.7 -243.1

* The optimal Hi's were obtained under the constraints of Hi <1.0. L.r. = label rate;
H, = pre-plant nonselective herbicides; H; = pre-plant incorporated grass herbicides; H, =
preemergence broadieaf herbicides; Hg = postemergence grass herbicides.

® Expected market price (80.20/kg) was used for spring peas.

¢ Simulated yield by the model using the average IPM results of state variables
and herbicide rates over 6 years.

¢ Actual average yield and calculated profit over 6 year results.
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the rotation and tillage. Table 7 demonstrates these sensitivity
results for spring peas under conservation tillage. The specified
benchmark values are the average of the IPM experiment over six

TABLE7 Sensitivity Tests of Bioeconomic Model for Spring
Peas under Conservation Tillage

Sensitivity Test Number*

Bench-
Variable Unit® mark 1 2 3 4 5
SWD, weeds/m’ 23.6 50.0 50.0
SWD, weeds/m? 0.3
SWD, weeds/m* 15.2 50.0 50.0 50.0
LWD, weeds/m? 314 50.0 50.0
LWD, weeds/m?® 2.2
LWD, weeds/m? 8.3 50.0 50.0 50.0
P $/kg 0.20 0.30
Py, $/1.r/ha 15.20
Py $/L.r/ha 30.47
P, $/1.r/ha 33.73 16.87 16.87
Py $/1.r/ha 41.96
Constraint
H, l.r. <1 <1 <1 <£1 <1
Solution
WD, weeds/m’ 0.0 0.0 6.8 0.0 0.0 6.8
WD, weeds/m? 0.1 0.1 0.1 0.1 0.1 0.1
WD, weeds/m? 25.9 259 259 433 433 15.6
TWD index/m* 26.2 26.2 42.4 43.6 436 321
H, Lr 0.0 0.0 0.0 0.0 0.0 0.0
H; Lr 1.8 1.0 1.0 1.0 1.0 1.0
H, Lr 0.0 0.0 0.0 0.0 0.0 1.0
Hg Lr 0.0 0.7 1.0 0.7 0.7 1.0
Y kg/ha 2727.5 27275 26720 2667.6 2667.6 2707.6
k1 $/ha -85.2 -931 -118.7 -105.1 -105.1 131.2

® Unspecified blanks are same as the benchmarks.
* Abbreviations used: L.r. = label rate, others as previously specified.
¢ OC = $564/ha, SM = 17.10%, and OM = 2.97%.
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years. The sensitivity results shows that the bioeconomic models
recommend only pre-plant incorporated grass herbicide (H;) under
no constraint, but they recommed pre- plant incorporated grass
herbicides and postemergence grass herbicide (Hg) under the
constraint of limiting herbicide application rates. The sensitivity test
results generally show that the bioeconomic models behave as
expected according to economic and agronomic theory. For
example, increasing pea price from $0.20/kg ($9.16/cwt) to
$0.30/kg ($13.74/cwt) in test 5 increase additional herbicide use.
Increasing spring weed densities in tests 2 and 3 increases profit
maximizing herbicide rates to sustain yield but profits fall.
Reducing herbicide price in test 4 increases herbicide use.

V. Conclusions

On the whole, profit maximizing weed management recommendations
from the bioeconomic models for spring peas suggested more frugal
and more targeted use of herbicides than is typical for grower practices
in the region. If validated profits to growers could be boosted by
eliminating excessive herbicides through greater use of weed counts
and other information collected early in the season. This model may
serve as the frame of a decision aid to predict economically justified
herbicide rates for pea growers' fields if weed seedling counts and other
field conditions are measurable at modest cost in early spring and mid-
summer. The model was structured to utilize readily available and
relatively inexpensive information including spring weed seedling
counts, mid-summer weed density in the previous season, soil
properties, tillage system, and crop and herbicide prices. It will benefit
the growers to employ the model whenever the predicted profit gain
relative to the prvious strategy exceeds the cost of collecting the field
data and using the model.

This bioeconomic model for use in spring peas in the presence
of multiple weed species requires the grower or weed management
consultant to select the appropriate herbicides consistent with the
general recommended rates by herbicide type. While this need to
combine judgement with objective recommendations increases
management demands, it is probably realistic in a multiple weed
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context to permit some annual change in herbicide products as the
mix of weed species varies within and among weed subgroups.

Two years of replicated testing of the bioeconomic model on
farmers' fields is planned . The agronomic and economic performance
of the model's recommendations will be compared statistically to the
farmer's weed control treatment, to weed scientists' subjective
recommendations, and a zero cotrol check. These results will be used
to validate and/or further calibrate the model. More research is needed
for developing a decision model for spring peas.
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