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Abstract

The study explores a long memory conditional volatility model on in-

ternational grain markets, demonstrating importance of modeling 

both temporal effects of volatility and long memory process. This 

study adopts six different volatility models, nested in an ARMA(p,q)- 

FIGARCH(P,D,Q), to capture dependence of grain cash price volatility 

and compares the performance of the six models. It also visits a re-

lated question about non-normal behaviors of grain prices and 

adopts the student-t density intended to account for fat-tailed prop-

erties of the data. We find suitability of the FIGARCH type models un-

der the student-t distribution and competitiveness of the parsimonious 

FIGARCH(1,d,0) for modeling long memory volatility.
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1. Introduction

A substantial body of studies has shown long memory behaviors in the mean 
and volatility processes of commodity prices and financial assets.1 In this con-
text, efforts have been made to specify both a long memory parameter and tem-
poral effect variables in a framework, and Baillie, Bollerslev, and Mikkelsen 
(1996) among them introduced the fractionally integrated GARCH (FIGARCH) 
process. The model has been successful in capturing the slow movements of 
volatility clustering of stock returns. For fractionally integrated processes, the 
effect of a shock decays much more slowly than for a process integrated of or-
der zero, but it does not exhibit infinite dependence. In this sense, fractional 
integration captures long memory dynamics more parsimoniously than a non-in-
tegrated process and it is more realistic than the integer-integrated models (Jin, 
Elder, and Koo, 2006).

When a series exhibits long memory, there is temporal dependence in 
the first and second moment even between distant observations. The depend-
ency provides a predictable component in series dynamics, which would be an-
other source for increasing forecasting accuracy and enhancing performance of 
risk management. Therefore, analyzing whether the long memory conditional 
variance model captures volatility behaviors of commodity or asset prices better 
than the conventional GARCH type model is an important task for more effi-
cient forecasting and risk management models.  

This study applies a long memory volatility model to international grain 
markets. Studies have examined the characteristics of volatility in individual mar-
kets trading foreign currencies, stocks, bonds, and commodities, but com-
paratively little attention has been given to the volatility of grain cash prices. 
The following studies are found to be related to grain cash or futures price 
dynamics. Barkoulas, Labys, and Onochie (1997) analyzed returns on monthly 
price levels of twenty-one commodities over the thirty-year period, and they 
found evidence of fractional integration for six out of all series. Crato and Ray 
(2000) found evidence of long memory in the volatilities of mean-corrected com-

 1 Baillie (1996) provides an extensive review of the major econometric works on long 

memory and fractional integration processes and the applications of previous stud-

ies in economics and finance.
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modity futures returns. Jin and Frechette (2004a) discovered suitability of the 
fractional integration for the volatility of commodity futures returns. Jin and 
Frechette (2004b) tested for long memory in daily and weekly agricultural cash 
price returns, using the modified rescaled range (R/S) test and a corrected t-test 
and found evidence of long memory in more than half of the agricultural com-
modities analyzed.  Elder and Jin (2007) reexamined commodity futures for evi-
dence of fractional integration, utilizing two wavelets-based estimators. They 
found an evidence of long memory, in the form of anti-persistence, in about 
half of agricultural commodity futures, while they found little evidence of long 
memory in metal futures. However, no study has been performed regarding frac-
tional integration behavior of grain cash price volatility and this study explores 
the issue.

The purpose of this study is to find a suitable volatility model for grain 
prices. We compare the performances of six competing volatility models, nested 
in an ARMA(p,q)-FIGARCH(P,D,Q) process, in capturing dependence of grain 
cash price volatility. The comparison will provide another layer of empirical 
supports for using the long memory volatility models over the conventional 
models. This study also emphasizes a related question about non-normal behav-
iors of grain prices since empirical studies have shown that commodity and fi-
nancial data have distributions with fatter tails and higher peaks than the normal 
distribution, known as leptokurticity.2 This paper adopts the student-t density in-
tended to account for fat-tailed properties of the data, and it is compared to the 
case assuming conditional normality. A normality test is carried out for the re-
turn series of the grain prices. When the series exhibit fat-tails behaviors, the 
student-t density will be applied to the estimation of the volatility models.  
Lastly, this study compares the performances of the FIGARCH(1,d,1) and 
FIGARCH(1,d,0) models. Some studies suggest that the FIGARCH(1,d,0) mod-
el is parsimonious, but performance of the model is comparable to that of the 
FIGARCH(1,d,1) model (e.g., Baillie at al., 1996; and Tse, 1998). The compar-
ison would illustrate a more appropriate long memory volatility model for grain 
prices.

The commodities of interest are three grains traded on international 
markets: U.S. wheat, corn, and soybeans.  These are important commodities in 

 2 See, for example, Fielitz and Rozelle, 1983; Hall, Brorsen, Irwin, 1989; Gribbin, 

Harris, and Lau, 1992; and McCulloch, 1996.
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the world grain market. The market has become more competitive due to 
growth and enhanced productivity of grain exporting countries, which impacts 
U.S. market shares and export prices because U.S. exporters are losing their ca-
pability of controlling quantity and price (refer, e.g., Pick and Park, 1991; Love 
and Murniningtyas, 1992; and Carter, MacLaren, and Yilmaz, 1999). For a 
completed comparison of the competitive models3, only the three grains are 
selected. This study does not attempt to analyze a large variety of commodities 
because this would involve a myriad of estimations and presentations of the 
results. Rather, we focus on a fewer number of, but the most important, grains.

The remainder of the paper is organized as follows: The second section 
provides a discussion about the GARCH and FIGARCH models. The third sec-
tion details the data used in this study and the fourth section presents the em-
pirical results. In the fifth section, the normality assumption for the price series 
is relaxed and the results are compared to the case assuming the normal 
distribution. The last section summarizes and concludes.

2. The GARCH and FIGARCH Processes

The GARCH type conditional variance models have been extensively used in 
the studies for price dynamics and risk control (e.g., Baillie and Myers, 1991; 
Kroner and Sultan, 1993; and Haigh and Holt, 2002). However, the GARCH 
processes have the limitation on capturing long-term dependence because persis-
tence in these models decays relatively fast, while studies reveal that time proc-
esses of commodity and financial assets prices have long-term dependency even 
between observations at long lags. To remedy this shortcoming, Engle and 
Bollerslev (1986) introduced the Integrated GARCH (IGARCH) model, but the 
process exhibits unrealistic infinite persistence. This suggests that the knife-edg-
ing distinction of either zero (corresponding to GARCH models) or integer in-
tegration (corresponding to IGARCH models) of stochastic volatility series may 
not provide a relevant specification for explaining long-term volatility behav-

 3 For each commodity, six conditional variance models are specified and compared: 

GARCH(1,1)-normal, GARCH(1,1)-student-t, FIGARCH(1,d,1)-normal, FIGARCH 

(1,d,1)-student-t, FIGARCH(1,d,0)-normal, and FIGARCH(1,d,0)-student-t.
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iors, whereas fractional integration might be fitted to such a purpose.
Stochastic form of volatility models have been extensively used and the 

most popular is the GARCH process. Following Bollerslev (1986), the 
GARCH(p,q) model is given by the following two equations:

(1) yt = μ + Et-1[yt] + ε
t
,

(2) 2
tσ = ω + α (L) 2

tε + β (L) 2
tσ ,

where the series { ε
t
}is the deviation from the conditional mean for some other 

process {yt}, Et-1[.] is the mathematical expectation, conditional on the in-
formation set at time t-1, 2

tσ  is the conditional variance of ε
t

, L denoting the 
back-shift operator, and α (L)≡ α

1
L+ α

2
L2+…+ α qLq, β (L)≡ β 1L+ β 2L2+…+

β pLp. If the roots of [1— α (L)— β (L)] and [1— β (L)] lie outside the unit cir-

cle, then {
2
tε } exhibits stability and covariance stationarity.

The GARCH type models have been successful in modeling stochastic 
volatility dynamics and have been applied to numerous empirical studies.  
However, the models face limitations in capturing long-term volatility behaviors 
of time series. Studies have reported a geometric rate of decay in volatility 
shocks (e.g., Ding, Granger, and Engle, 1993), which is neither an exponential 
rate of decay in propagation of shocks in an I(0) process nor a permanent de-
pendence of shocks in an I(1) process. This suggests that both the GARCH and 
IGARCH models are not effective in capturing the persistence. The distinction 
between the integer orders is therefore too restrictive for modeling low fre-
quency volatility behaviors. Fractional integration is more adequate, in which 
shocks dampen more slowly than GARCH shocks, but they are not permanent.4 

Following Baillie at al. (1996), if we expand the GARCH(p,q) models 
by incorporating the fractional difference operator, we obtain the FIGARCH 
(p,d,q) models as follows:

(3) ∅ (L)(1—L)d 2
tε = ω+[1— β (L)] vt,

 4 Under the integer integration, time series are usually presumed to be integrated of 

order zero or one.  When the order of integration is zero, the process is stationary, 

and effects of a shock decay geometrically. When the order of integration is one, 

the process is said to have a unit-root, and effects of a shock persist into the in-

finite future.
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where ∅ (L)≡[1— α (L)— β (L)] (1—L)–1, vt≡
2
tε —

2
tσ , d is the fractional in-

tegration operator which is typically between 0 and 1, and all the roots of ∅
(L) and [1— β (L)] lie outside the unit circle. If we rewrite the process as an 
infinite-order ARCH process, the conditional variance of ε t is given by

(4) 2
tσ = ω [1- β (L)]–1+{1 - [1- β (L)]–1

∅ (L)(1-L)d} 2
tε .

For the FIGARCH process in Equation (3) to be well-defined and the condi-
tional variance to be positive almost surely for all t, all the coefficients in the 
infinite ARCH representation in Equation (4) must be non-negative. Using a di-
rect extension of the proofs for the IGARCH case, Baillie at al (1996) show 
that the FIGARCH processes are strictly stationary and ergodic for 0≤d≤1.5

The FIGARCH model nests the GARCH model when d = 0 and the 
IGARCH model when d = 1. For the covariance-stationary FIGARCH(p,d,q) 
model with d = 0, from a forecasting perspective, shocks to the conditional var-
iance die out at a fast exponential rate, whereas when d = 1, shocks to the con-
ditional variance persist indefinitely. In contrast, for the FIGARCH(p,d,q) model 
with 0 < d < 1, shocks decay at a slow hyperbolic rate. Thus, although the cu-
mulative impulse response function converges to zero, the fractional differ-
encing parameter provides important information regarding the pattern and 
speed with which shocks to the volatility process are propagated. The value of 
the fractional differencing parameter depends therefore on the decay rate of a 
shock to conditional volatility. For values of d > 1, the conditional variance 
process is unrealistically explosive and the cumulative impulse response is 
undefined.

In most practical applications, relatively simple first-order models have 
been found to provide good representations of the conditional variance 
processes. That is, low-order GARCH models typically outperform high-order 
ARCH models. For example, McCurdy and Morgan (1988) and Hsieh (1989) 
found that the GARCH(1,1) model fits the second moments of currency prices 
better than high-order ARCH models. We therefore use the GARCH(1,1) as our 
basis model of conditional variance as follows:

 5 See pp 8-9 in Baillie, Bollerslev, and Mikkelsen (1996) for details on the debate 

concerning stationarity of the FIGARCH(p,d,q) class of processes.
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(5) 2
tσ = ω+ α 1

2
1−tε + β 1

2
1−tσ .

If we express the corresponding FIGARCH(1,d,0) process as an infinite-order 
ARCH representation, we obtain6 

(6) 2
tσ = ω+ β 1

2
1−tσ + [1— β 1L—(1—L)d] 2

tε ,

and the corresponding FIGARCH(1,d,1) process is

(7) 2
tσ = ω+ β 1

2
1−tσ + [1— β 1L—(1— ∅ 1

L)(1—L)d] 2
tε .

3. Data

The three grains of interest are U.S. No.2 Hard Red Winter Ordinary wheat, 
U.S. No.3 yellow maize/corn, and U.S. No.2 yellow soybeans. The data on 
wheat and corn came from the International Grains Council in London, the 
United Kingdom, and the data on soybeans came form the Oil World in 
Hamburg, Germany. The data could be retrieved from the UNCTAD Commodity 
Price Bulletin. All of the series stem from spot or physical markets and can 
be termed cash prices. These markets function competitively, and none of the 
price series represent secondary or trade unit value prices. The series are 
monthly average prices per metric ton and are denoted in U.S. dollars.  
Monthly frequency represents a series in which both short-term and long-term 
memory can be observed without much noise. The monthly averages are calcu-
lated from daily quotations, except for wheat prices which are calculated from 
weekly quotations.  

 6 The process can be rewritten as an ARMA(1,1) process in 
2
tε ,

(1— ∅ 1
L)

2
tε = ω +(1— β

1
L) vt, where ∅ 1≡α 1+ β 1 . When α

1+ β 1  is equal to 

one, the IGARCH(1,1) process occurs as follows: (1—L)
2
tε = ω +(1— β

1
L) vt.

Then, the corresponding FIGARCH(1,d,0) model is (1—L)
d 2

tε = ω + (1— β
1
L) vt.
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Original data set starts from January 1960. Remind that we experienced 
the so-called world food crisis in the 1970s and the Russian wheat shock in 
year 1973. Grain export prices roughly doubled in 1973 through 1974, largely 
as a consequence of global macroeconomic imbalance. The international prices 
of almost all commodities and raw materials increased sharply during this peri-
od, including petroleum, bauxite, copper, and food and farm commodities.  The 
gravity of the situation was captured in food sector more dramatically due to 
the Russian wheat shock. For more details, refer, for example, Hopkins and 
Puchala (1978) and Paarlberg (1999). Therefore, one can easily expect a struc-
tural change in the international grain price dynamics (mean and volatility proc-
esses). If we specify the both periods before and after the early 1970s in a 
framework, it might produce misleading estimates of ARCH, GARCH, and frac-
tional integration parameters. A possible remedy for this would be estimation 
of the models for two different periods: one for the time period before early 
1970s and the other for the time period after early 1970s. For our sample data, 
the time span before the 1970s is relatively short and therefore, we will utilize 
sample data after the 1970s.  

For a visual inspection of existence of a structural change (around early 
1970s), we plotted the grain price series, which are displayed in Figures 1 
through 3. The figures show distinctly different movements of the series before 
and after the year 1973. In the early period of the sample when price level was 
low, volatility was relatively weak for all three commodities. The post-1973 
observations have higher price levels and more volatile movements than those 
in the early sample. Using the visual examination as a guide, we removed the 
sample from January 1960 through 1974, so the data used in this analysis run 
from January 1975 through December 2002. Note that due to the access 
limitation, data after January 2003 could not be used in this study. Summary 
statistics for the grain prices are presented in Table 1.

It is immediately evident from Figures 1 through 3 that the raw grain 
cash price series, pt, is nonstationary. The Augmented Dickey-Fuller (ADF) test 
was performed on the sample period to check for the existence of a unit-root, 
and the null of a unit-root was not rejected for all series at the conventional 
significance levels. Following standard practice, we shall therefore concentrate 
on modeling the monthly returns; i.e., yt ≡ log(pt/ pt-1). The ADF test was per-
formed again for the return series, and results indicate that the null of a unit-root 
was clearly rejected for all return series at all conventional significance levels.
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FIGURE 1.  Cash Prices of U.S. Wheat, Hard Red Winter Ordinary.
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FIGURE 2.  Cash Prices of U.S. Maize/Corn, No.3 Yellow.
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FIGURE 3.  Cash Prices of U.S. Soybeans, No.2 Yellow.
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FIGURE 4.  Returns Series of U.S. Wheat Cash Prices, Hard Red Winter Ordinary.
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FIGURE 5.  Return Series of U.S. Maize/Corn Cash Prices, No.3 Yellow.
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FIGURE 6.  Return Series of U.S. Soybeans Cash Prices, No.2 Yellow.
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TABLE 1.  Descriptive Statistics and Normality Test Results for Cash Price Series.

Statistics U.S. Wheat U.S. Corn U.S. Soybeans

Mean
Standard Deviation
Maximum
Minimum
Skewness
Kurtosis
Normality Test

146.34
 26.89
258.10
 93.00

    0.661
    3.931

36.64 (0.000)

127.40
  21.64

219.40
  80.00

      0.980
      5.311

125.18 (0.000)

252.55
 40.93
384.00
183.00

     0.552
     2.798

 17.63 (0.000)

Notes: The normality test was completed using the Jarque-Bera statistic, where the null 
hypothesis is the normal distribution and the values in the parenthesis are 
p-values.

TABLE 2.  Normality Tests for Filtered Return Series.

Return Series Statistics Wheat Corn Soybeans

Mean-corrected 
Returns

b3

b4

N

0.201
3.791

10.97**

-0.045
5.509

85.61**

0.236
6.979

224.17**

ARMA(1,0) filtered 
Returns

AIC
b3

b4

N

847.84
0.215
3.854

12.80**

815.03
0.187
6.111

133.42**

801.49
0.190
6.301

154.13**

ARFIMA(1,d,0) filtered 
Returns

AIC
b3

b4

N

850.18
0.247
3.994

17.24**

818.22
0.163
5.839

110.97**

801.12
0.457
6.405

173.58**

Notes: b3 and b4 denote the sample skewness and kurtosis, respectively, for the filtered 
return series. N denotes the Jarque-Bera normality test statistic, and the 
superscript** denotes rejection of the null hypothesis of normality at the 5 
percent significance level.

To provide additional evidence, we also utilized the Kwiatkowski, Phillips, 
Schmidt, and Shin (1992) (KPSS) test, which has a null of stationarity. Again, 
the evidence suggests that the data are stationary, as the null of stationarity was 
not rejected for all commodities at the 5 percent significance level.7 The results 

 7 There are two different tests in the KPSS. The first tests the null hypothesis of sta-
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of the ADF and KPSS tests are not reported here, but they are available from 
the authors upon request. The return series were also plotted, and they clearly 
indicate the occurrence of tranquil and volatile periods.

Subsequently, departure from the normality was assessed, focusing on 
the higher order of moments of the return series, the skewness and kurtosis.  
The results are presented in Table 2. To increase the generality of the test, we 
test three different return series filtered by different mean processes: mean-cor-
rected, ARMA(1,0), and ARFIMA(1,d,0) processes. The model specifications of 
the ARMA and ARFIMA conditional mean processes were based on Akaike 
Information Criterion (AIC), and the mean models were estimated by condi-
tional Gaussian Maximum Likelihood. All kurtosis coefficients are substantially 
larger than the value corresponding to the normal distribution, suggesting that 
the empirical distributions of the returns deviate from the normality in that they 
exhibit heavy tails. Normality test results by the Jarque-Bera statistic clearly re-
ject the null hypothesis of normality for all filtered return series. Those results 
suggest that a student-t type distributional assumption would be better fitted to 
movements of the return series than the normality assumption.

4. Empirical Results

This study investigates a relevant framework of conditional variance model 
through comparison among different specifications of the FIGARCH(p,d,q) 
model under both the normal distribution and the student-t distribution. 
Therefore, when we interpret the results, we focus on examining which condi-
tional variance model provides the most parsimonious representation and best 
performance in capturing dependence in the volatility dynamics of the grain 
prices.

The GARCH(1,1), FIGARCH(1,d,1), and FIGARCH(1,d,0) models are 
estimated for the grain price returns under the normality assumption. For all 
conditional variance models, we use the same conditional mean model, ARMA 
(1,0). The FIGARCH models are estimated using Bollerslev and Wooldridge’s 

tionarity without drift and the second tests the null of stationarity with drift.  The 

both null hypotheses were not rejected at the 5 percent significance level. 
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(1992) quasi-maximum likelihood estimator (QMLE), which allows for asymp-
totically valid inference when the standardized innovations are not normally 
distributed.8 For the GARCH(1,1) specification, the differencing parameter, d, 
is restricted to zero.

The estimation results are displayed in Tables 3 through 5. The 
log-likelihood statistic and AIC, along with the skewness (b3) and the kurtosis 
(b4) for the standardized residuals of the estimated models, are reported. In 
what follow, Ljung and Box Q-statistics provide information about serial 
correlation. The Q-statistics test for remaining autocorrelation in residuals and 
squared residuals in the variance equations. There is one Q-statistic for each lag 
k, and it is distributed as χ2(k) under the null hypothesis of no autocorrelation 
up to lag k. If the variance equation is correctly specified, then all Q-statistics 
should be small and statistically insignificant. Finally, the test statistics of 
ARCH and EGARCH effects in the residuals are presented in the last two row
s.9 The EGARCH test is a joint test, proposed by Engle and Ng (1993), for 
sign bias, negative size bias, and positive size bias. The sign bias test inves-
tigates the impact of positive and negative return shocks on volatility not pre-
dicted by the model under construction. The negative (positive) size bias test 
focuses on the different effects that large and small negative (positive) return 
shocks have on volatility not predicted by the volatility model. It is a Lagrange 
Multiplier (LM) test for adding the three effect variables in the conditional var-
iance equation. If the volatility model being specified is correct, then the null 
hypothesis says that the three effects are not statistically significant.

We also investigated higher orders of GARCH and FIGARCH models; 
for example, GARCH(2,1), GARCH(2,2), GARCH(3,1), FIGARCH(2,d,1), 
FIGARCH(2,d,2), and FIGARCH(3,d,1). Based on AIC and Log-Likelihood sta-
tistics, there is no evidence that any higher order is required. For all different 
FIGARCH processes, it was found that regardless of the specification adopted, 

 8 Bollerslev and Mikkelsen (1996) used a simulation to show that the QMLE per-

forms well in estimating FIGARCH models, compared to alternative methods.

 9 The null hypothesis of the ARCH-LM test is that there is no ARCH up to lag order 

p in the residuals.  The test was completed by collecting the residuals from a chos-

en model and performing regression between squared residual and lagged-squared 

residuals.  The test statistic of ARCH-LM is calculated by T･R2. The statistic is 

distributed with a Chi-square, χ 2
p
, where T is the number of observations, R2 is 

the coefficient of determination from the auxiliary regression, and p is the number 

of variables in the right-hand side of the auxiliary equation.
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the estimated values of the fractional integration parameter, d, does not change 
significantly. This suggests that although long memory parameter value is sensi-
tive to the specification of temporal effects, there is no change in the main im-
plication of fractional integration.

The estimates of the GARCH(1,1) and FIGARCH(1,d,1) models for 
wheat under the normality assumption are displayed in the second and fourth 
column, respectively, in Table 3.  The Q statistics show that the simple model, 
GARCH(1,1), performs a good job in modeling dependence in the volatility of 
wheat cash returns. The FIGARCH(1,d,1) performs better only for Q2(20).  The 
fractional differencing estimate is 0.277, which represents the 0.277th order of 
integration. The t-statistic of the fractional differencing parameter indicates that 
the long memory parameter is statistically significant at the 5 percent level.  
However, the usual Wald type t-test may not provide a correct test for the 
FIGARCH(1,d,1) over the GARCH(1,1) because the Wald type test is not in-
variant in nonlinear models. Therefore, a likelihood ratio (LR) test would be 
better for the test of FIGARCH vs. GARCH. When compared to that of the 
GARCH(1,1) model, the log-likelihood and AIC values of the FIGARCH(1,d,1) 
model do not suggest that the FIGARCH(1,d,1) model performs distinctly better 
than the GARCH(1,1) model. 

For corn return series, the Q-statistics of squared residuals of the 
FIGARCH(1,d,1) are smaller than those of the GARCH(1,1). This implies that 
the FIGARCH(1,d,1) is better for capturing dependence in the volatility. The 
log-likelihood and AIC statistics support this and the EGARCH test also show 
that the FIGARCH(1,d,1) model is more effective than the GARCH(1,1) in re-
ducing misspecification of the conditional variance equation caused by different 
sign and size of the stochastic shocks. The fractional differencing parameter for 
corn is 0.127. For soybeans, a convergence could not be achieved for the 
FIGARCH(1,d,1) model with the normality assumption. This leads us to com-
pare the GARCH(1,1) model with the FIGARCH(1,d,0) model.

A preferred long memory conditional volatility model by Baillie at al. 
(1996) and Tse (1998) is FIGARCH(1,d,0), which is nested on the FIGARCH 
(1,d,1) model. We further estimated the FIGARCH(1,d,0) model in order to 
compare the performances of the two competing long memory conditional vola-
tility models. Estimates and diagnostic statistics of the FIGARCH(1,d,0) model 
are displayed in the sixth column in Tables 3 through 5. For the wheat and corn 
series, the two competing models have similar performance in capturing 
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dependence. AIC statistic suggests that the FIGARCH(1,d,0) model performs 
slightly better than the FIGARCH(1,d,1) model for wheat, but not for corn.  
For soybeans, when compared with the GARCH(1,1) model, the FIGARCH 
(1,d,0) model performs better in describing the dependence in the variance in 
terms of the Q-statistics of squared residuals. 

5. Relaxing the Normality Assumption 

It has been hitherto assumed that the returns series follow the normal 
distribution. However, the results of the normality tests, presented in Table 2, 
indicate that the return series have higher kurtosis than that of the normal 
distribution.  Hereafter, we therefore relax the normality assumption and use the 
student-t distribution to compare performance of the models with those under 
the normality assumption.

Commodity and financial time series have been traditionally assumed 
to follow the normal distribution with finite mean and variance. The Gaussian 
assumption is easy to apply to economic analyses, and many of its properties 
have been revealed to economists so that the distributional hypothesis has been 
embraced in economic and financial analyses, despite the fact that empirical 
evidences show distinct anomalies from the normal distribution. Empirical stud-
ies have found that economic and financial data show clear abnormal behaviors.  
Note that the normality assumption is to a certain extent justified by the fact 
that the QMLE is found to behave quite well, even when non-normal errors are 
observed. However, the degree of inefficiency of the estimator increases with 
the degree of departure from normality (Engle and Gonzlez-Rivera, 1991). If 
returns display fat-tails behaviors, therefore, it is desirable to use the student-t 
distribution to capture the higher observed kurtosis. Bollerslev (1987) and Hsieh 
(1989) show that when series have higher kurtosis, the student-t distribution 
performs better than other competing distributional models.

If we write the log-likelihood of the standard normal distribution when 
the conditional mean equation is expressed as in Equation (1), it is 

(8) Lnorm = ∑ σε+πσ−
=

T

i
ttt

1

222 )],/()2[ln(5.0



Journal of Rural Development 31(2)100

where T denotes the number of observations. In the case of the student-t dis-
tribution, the log-likelihood becomes

(9) LStud = ∑
−νσ

ε
++ν+σ−π−νπ−

ν
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+ν
Γ
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where Γ (‧) is the gamma function, and denotes the degrees of freedom (2 <
ν < ∞ ).

The estimates of the volatility models under the student-t distribution 
are displayed in the third, the fifth, and the last column, respectively, in Tables 
3 through 5. The Student DF denotes a tail coefficient when we use the stu-
dent-t density to capture the fat-tails behaviors. A higher t-value for the co-
efficient indicates a fatter-tails behavior of the volatility than that of the normal 
distribution. The results of wheat and corn prices show that fat-tails are sig-
nificant and that the conditional volatility models perform better under the stu-
dent-t distribution than those under the normal distribution, based on Q-statistics 
for dependency and AIC values. For soybeans prices, the results do not clearly 
show a better performance of the processes under the student-t distribution.  
Rather, they suggest that in the case of soybeans, skewness also needs to be 
captured in addition to excess kurtosis. This suggests that a skewed Student-t 
density is a proper distributional model, as proposed by Fernndez and Steel 
(1998), to account for both the asymmetric and fat-tails behaviors at once.

Overall results suggest that, among the competing six different vola-
tility models, the FIGARCH(1,d,0) under the student-t density does the best job 
in modeling volatility of wheat and corn cash price returns, and the FIGARCH 
(1,d,0) under the normality density is the most appropriate for the case of 
soybeans. The differences are typically small and statistically insignificant be-
tween the Q-statistics, which still supports for using FIGARCH type models for 
the volatility. Purely from the perspective of describing the volatility of grain 
prices, the FIGARCH type models appear better than the GARCH model. These 
suggest that fractional integration parameter is required in modeling grain price 
volatility.
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6. Summary and Conclusion

The objective of this study is to suggest a suitable volatility model for the inter-
national grain market. There is yet little consensus on the standard for modeling 
grain price volatility. The contribution of this paper may be placed on demon-
strating the importance of modeling both long memory and temporal effects of 
the volatility processes of the grain prices in one frame and on finding an ap-
propriate long memory stochastic volatility model for the price series. We ap-
plied six different volatility models to cash price series of U.S. wheat, corn, and 
soybeans, which are of most important commodities in the world grain market.  
We compared the performance of the models in capturing dependence of the 
price volatility, and also emphasized suitability of the student-t density intended 
to account for non-normal, fat-tailed properties of the data. Overall, the empiri-
cal results lead to a conclusion that the grain cash price volatilities exhibit long 
memory and that the memory is adequately modeled by a fractionally integrated 
process, which is implemented via parametric procedures in FIGARCH models.  
At the same time, we find the suitability of the FIGARCH type models under 
the student-t distribution and the competitiveness of the parsimonious 
FIGARCH(1,d,0) model. It is, therefore, desirable to use long memory condi-
tional variance models for analysis of the grain price volatility dynamics.

This paper is exposed to a limitation from the data availability. We uti-
lized only the monthly data, but not other higher frequencies. Therefore, an at-
tention should be paid to applying the models to other frequencies of the data 
and/or other commodities. This paper does not proceed beyond showing the 
suitability of the long memory volatility models and recommending utilization 
of them in modeling volatility processes. We leave the next step for future stud-
ies for an analaysis of a clearer cut of fractional differencing for the volatility 
processes of agricultural commodities, a hedging strategy with the long memory 
perspective of volatility dynamics, or a forecasting evaluation with the long 
memory dynamics models.
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