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Abstract

Previous studies have shown that weather derivatives are an effective

means of hedging agricultural production risk. Yet, it is still unclear

what role weather derivatives will play in agriculture as a risk man-

agement tool as compared with existing crop insurance programs

which depend highly on government subsidies. This study compares

the hedging cost and effectiveness of weather options and crop in-

surance for soybean in southern Minnesota. Our results show that the

hedging effectiveness of weather options is limited at the farm level

while the effectiveness increases as the level of aggregation

increases. Thus, individual farmers will continue to prefer the federal

crop insurance program to weather derivatives for their production

risk management. However, the US government as an insurer, which

currently does not hedge its risk exposures taken from farmers in the

federal crop insurance program, could reduce the implied social cost

in the form of un-hedged risk exposure by use of the weather options

in the financial market.
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Ⅰ. Introduction

Weather events are a major source of crop production risk exposure. One 
method of hedging this risk exposure in the U.S. has been through the use of 
federal crop insurance. However, crop insurance indemnities are determined 
based on yield shortfall, which may or may not be actually caused by natural 
disasters. As a consequence, the crop insurance market suffers from costly 
asymmetric information problems: adverse selection, moral hazard, and 
verifiability (Hyde and Vercammen 1997; Skees and Reed 1986). In addition, 
the failure of crop insurance markets is closely related to the existence of 
systemic weather risk which stems from spatially correlated adverse weather 
events (Xu et al. 2009; Woodard and Garcia 2008). Miranda and Glauber 
(1997) argue that without government subsidies or reinsurance crop insurers 
would have to pass the cost of bearing the systemic risk through to farmers. 
One might conclude that government subsidies are a substitute for hedging the 
underlying weather risk.

As a result, the US government subsidizes a high proportion of the 
costs of crop insurance for participating farmers and private crop insurance 
companies. Farmers pay only 33-62% of the total premium(price), depending on 
the coverage level, and the federal government pays the rest of the premium. 
Insurance company losses are reinsured by the USDA and their administrative 
and operating expenses are reimbursed by the federal government. During fiscal 
2008-2010, the cost of the government premium subsidy for farmers averaged 
$5.06 billion (92% of the average total government cost). The next largest 
component was reimbursement of administrative and operating expenses to 
private insurance companies. Under the conditions of the Standard Reinsurance 
Agreement(SRA) participating insurance companies retain only about 20% of 
the business in their assigned (high) risk funds and the federal government 
assumes the balance of the high risk portfolio (Shields 2010). The risk exposure 
in these funds represents an important part of the social costs of the federal 
crop insurance program. In effect, the social cost includes the explicit and 
implicit costs that exist in the federal crop insurance program. The government 
subsidies are provided for farmers and insurance companies directly so that we 
consider the subsidies as explicit cost in this study. On the other hand, the high 
risk exposure which the government assumes but does not hedge is not direct 
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cost in normal weather seasons but the government should cover losses of 
insurance companies based on the SRA in the occurrence of large-scale 
disasters. Therefore, we consider the government’s unhedged risk exposure as 
implicit or potential social cost.

Weather derivatives such as futures and options contracts, based on 
temperature and precipitation, have been suggested as a potential risk 
management tool. In contrast with crop insurance, the problems of asymmetric 
information do not exist in the weather derivatives market because weather 
derivatives insure against the weather events causing damage, not the damage 
itself. Systematic weather risk over larger geographic areas may also be 
effectively hedged using weather derivatives, which could reduce the need for 
government subsidies (Woodard and Garcia 2008). If the purpose is to reduce 
the social cost of weather risk management, the public policy question is: who 
should use weather derivatives - the farmer, the insurance company, or the 
government? 

Previous studies have focused on weather options pricing because there 
is no agreed pricing mechanism for the options underlying nonstorable and 
nontradable assets such as weather indices (Huang et al. 2008; Odening et al. 
2007; Cao and Wei 2004; Richards et al. 2004; Yoo 2003). In this regard, 
simulation methods have been widely used to price weather derivatives, as a 
generalized closed-form pricing mechanism has yet to be developed. Those 
studies also show that hedging effectiveness exists when using weather 
derivatives, yet the efficacy of weather derivatives is limited when hedging 
farm-level agricultural exposures and geographic basis risk is a primary concern 
(Woodard and Garcia 2007, 2008; Odening et al. 2007). Basis risk is generally 
defined as the hedging gap between the payoffs of a given hedging instrument 
and shortfalls in the underlying exposure, and geographic basis risk originates 
from the distance between the weather station for weather derivatives and the 
exposure location.

It remains unclear what role weather derivatives will play in 
agriculture. One reason for this uncertainty is the continuing popularity of crop 
insurance. That popularity is due significantly to the fact that the federal 
government subsidizes insurance premiums to keep farm premium rates low and 
to maintain private crop insurance companies with adequate reserves in case of 
widespread crop disasters. Yet, the rising cost of the federal crop insurance 
program has been an incentive for the government to seek alternative ways to 
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reduce that cost. To address that policy dilemma, we compare weather 
derivatives to crop insurance as a potential risk management tool. Unlike 
previous studies which compare weather derivatives to the no hedge alternative, 
several risk indicators are compared for alternative hedging tools using 
historical farm-level and county-level soybean yield data. No previous study has 
compared hedging cost and effectiveness directly between weather options and 
crop insurance. Based on comparisons of hedging effectiveness we find that the 
social cost of the federal crop insurance program could be reduced by selective 
use of weather options. 

Ⅱ. Conceptual Framework

To analyze the hedging cost of weather options for crop agriculture, we 
integrate three models - a yield response model, a temperature process model, 
and a precipitation process model. The estimated yield response model 
identifies the weather-yield relationship and determines the optimal tick value 
(the indemnity payment per unit of adverse weather event) and the optimal 
hedge ratio of weather options as an efficient hedging instrument. Linear, 
quadratic, and Cobb-Douglas yield response functions are considered to 
estimate soybean yields on rainfall and temperature variables by OLS and to 
choose the model which fits the weather-yield relationship best. Although there 
are many other factors that potentially influence yields, if they are uncorrelated 
with weather variables, relatively simple models will provide reliable estimates 
of the weather-yield relationship (Richards et al. 2004).

Soybean is used in this analysis, as soybean yield data is both 
nonstationary and highly variable, which makes it a good test of the approach. 
The data series is detrended to correct for the general upward trend in yields 
before analyzing the impact of weather on yield. Following Turvey’s (2001) 
yield response model, we use cumulative daily rainfall and temperature for 
growing season from June to August instead of monthly or shorter time 
intervals. There are two reasons for this. First, month-to-month temperatures are 
typically auto-correlated. Second, using multiple derivative contracts based on 
monthly weather indices increases the probability of overfitting the hedging 
parameters and may diminish the accuracy of the hedging estimates (Woodard 
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and Garcia 2007).

1. Temperature Model

Weather derivatives are evaluated mostly based on daily simulation of 
underlying weather processes, so an appropriate weather process model needs 
to be determined. Temperature variables tend to generate abnormal variations 
or irregular jumps due to unexpected weather events, and then they revert back 
to some long-run average level. We construct our temperature process model 
using mean-reverting Brownian motion with log-normal jumps and seasonal 
volatility (Richards et al. 2004; Yoo 2003).

The change of average daily temperature (Tt) is not entirely 
deterministic and it is assumed to follow a Brownian motion process as:

(1)  dTt = μdt + σdz

where μ is the drift rate per unit of time (dt), σ is the standard deviation of 
the process, and dz is an increment of a standard Weiner process with zero 
mean and variance of dt. The process in (1) is rewritten by including a 
mean-reversion term as:

(2)  dTt = κ(Tt
m – Tt)dt + σdz

where κ is the rate of mean reversion, and Tt
m is the instantaneous mean of 

the process. Tt
m is set up to accommodate seasonality, auto-regression, and time 

trend as:

(3)  å
=

-++++=
p

j
jtjt

m
t TttttTT

1
3210 ργ)365/π2cos(γ)365/π2sin(γγ),(

where t is the time variable, measured in days, and the γ terms are parameters. 
We let t denote 1, 2, 3, …, 24,837 for September 1, 1940 to August 31, 2008 
(data period). Since we know that the period of the oscillations is one year 
(neglecting leap years) we have (2πt / 365). In addition, the optimal lag is 
found to be p = 3 by the Bayesian Information Criterion.
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To address the unexpected discrete jumps, we assume that discrete 
jumps occur according to a Poisson process q with average arrival rate λ and 
a random percentage shock φ. The random shock is assumed to be distributed 
as ln(φ) ~ N (θ, δ2), where θ is the mean jump size and δ2 is the variance of 
the jump (Jorion 1988). The Poisson process is distributed as dq = 0 with 
probability 1 – λdt and 1 with probability λdt. Combining this with (1) - (3), 
the stochastic differential equation for the temperature process accommodating 
mean reversion and jump diffusion is:

(4)  dTt = (κ(Tt
m – Tt) – λθ)dt + σdz + φdq

The parameters (κ, σ, λ, θ, δ) of the weather process model in (4) are derived 
by maximum likelihood estimation.

2. Precipitation Model

A combination of a Markov chain and a gamma distribution function has been 
recognized as a simple and effective approach in generating daily precipitation 
data for many environments (Geng et al. 1986; Richardson and Wright 1984). 
The stochastic process of daily precipitation can be decomposed into the binary 
event (Xt) “rainfall” and “dryness,” respectively, and a gamma distribution for 
the amount of precipitation (Yt) for rainy days. Thus, the amount of 
precipitation falling on a date t is assumed to be a random variable, Rt = Xt 

· Yt. 
The first part of the process is Xt = 0 if day t is dry, or Xt = 1 if day 

t is rainy. If we assume that Xt follows a first-order Markov process, then the 
probability of rainfall occurrence at day t (Pt) can be written as:

(5)  Pt = Pt-1 · Pt (W/W) + (1- Pt-1) · Pt(W/D), for t = 1,2,…,n

where Pt(W/W) is the transition probability from rainfall at day t-1 to rainfall 
at day t, and Pt(W/D) is the transition probability from dryness at day t-1 to 
rainfall at day t. 

The second part of the precipitation process is a nonnegative 
distribution for the amount of precipitation (Yt) for rainy days. Yt is assumed 
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to be a stochastically independent sequence of random variables having a 
gamma distribution whose probability density is given by:

(6)  
0βα,,     ,
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where α and β are distribution parameters, and Γ(α) is the gamma function of 
α. 

Since it is known that the rainfall pattern depends on the seasonality 
in a year, a Markov chain can best be applied for each month separately (Geng 
et al. 1986). The estimation of the transitional probabilities Pt (W/W) and 
Pt(W/D) are obtained directly from the historical daily rainfall assuming that the 
homogeneity condition holds for rainfall within a month and we have at least 
twenty years of data (Richardson and Wright 1984). The gamma distribution 
parameters α and β are derived by maximum likelihood estimation.

Ⅲ. Methodology

The empirical analysis is comprised of estimating the yield response model to 
determine the optimal hedge ratio of weather options, pricing the weather 
options to determine the cost of hedging, and evaluating the hedging 
effectiveness as measured by several risk indicators: certainty equivalent, risk 
premium, Sharpe ratio, and value-at-risk.

1. Data

Weather data is obtained from the Minnesota Climatology Working Group. In 
order to analyze a cross-section of the southern Minnesota region, we use 
weather data from four dispersed measurement stations, Luverne, Morris, 
Preston, and Rush City which map into the southwest, northwest, southeast, and 
northeast points of the region. For each location (L), daily high temperature 
(MaxTt

L), daily low temperature (MinTt
L), and daily precipitation (prect

L) are 
obtained for the period from September 1, 1940 to August 31, 2008 (t = 1 to 
24,837).
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Variable/Region Mean Max. Min. S.D. Kurtosis Skewness
GDD (degree)
   Luverne
   Morris
   Preston
   Rush City

1,804
1,679
1,726
1,611

2,075
1,971
2,048
1,862

1,437
1,283
1,359
1,258

140.7
136.1
132.2
140.3

0.25
0.31
0.01

-0.42

-0.58
-0.48
-0.23
-0.36

Rainfall (inch)
   Luverne
   Morris
   Preston
   Rush City

10.75
10.71
13.54
12.59

22.92
16.22
23.64
22.45

2.18
3.96
5.81
2.85

3.75
2.99
4.45
3.67

0.93
-0.84
-0.58
-0.46

0.61
-0.24
0.28
0.39

For the temperature-based weather call/put option, the standard measure 
of growing-degree-day (GDD) for a particular day is calculated as:

(7)  50
2

]50],86,TxMax[Min[Ma]50],86,TnMax[Min[Mi
GDD tt

t -
+

= .

The growing degree day restricts the low temperature (floor) at 50 degrees 
Fahrenheit (temperature below which no growth occurs) and the high 
temperature (cap) at 86 degrees (temperature above which benefits of an 
additional degree are minimal). Precipitation is measured in inches. Both 
temperature and precipitation data are the cumulative daily measures during 
June-August.

Both county-level and farm-level crop yield data are used to observe 
the effects of spatial aggregation on hedging effectiveness. County-level and 
farm-level soybean yields (per planted acre) are obtained from the National 
Agricultural Statistics Service (NASS) and Risk Management Agency (RMA), 
respectively, for the four selected counties (towns): Rock County (Luverne), 
Stevens County (Morris), Fillmore County (Preston), and Chisago County (Rush 
City). NASS provides the county-level yields for 68 growing seasons from 
1941-2008. The farm-level yields are provided by RMA for 23 growing seasons 
from 1984-2006. We select 24 representative farms reporting at least 17 years 
out of 23 years to evaluate the crop insurance and weather options at the farm 
level.

TABLE 1.  Statistics of GDD and Rainfall during June-August for Luverne, Morris, 
Preston, and Rush City, 1941-2008
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TABLE 2.  County-level Soybean Yields(Bushels per Planted Acre) in the Four 
Counties, MN, 1941-2008

City(County) Mean Max. Min. S.D. Kurtosis Skewness
Luverne(Rock) 29.1 52.4 10.1 11.7 -1.13 0.21
Morris(Stevens) 23.9 42.7 6.8 10.5 -1.39 0.29
Preston(Fillmore) 28.6 56.4 10.9 11.5 -0.71 0.47
Rush City(Chisago) 19.6 41.6 4.5 8.3 -0.37 0.48

2. Valuation of Weather Options and Crop Insurance

Valuation of the weather option premium is carried out by daily simulation. The 
option value is calculated by averaging the discounted payoffs of the option 
over 10,000 weather values by Monte Carlo simulation based on the estimated 
parameters in the weather process models. The advantages of daily simulation 
are to produce more accurate results based on a considerably large number of 
simulated values and to incorporate possible weather forecasts (such as mean 
reversion or extreme events) into the pricing model.

A risk-neutral valuation method is used which discounts the payoffs of 
the options at expiration by the risk-free rate under the assumption that the 
market price of weather risk is zero. If there is no correlation between the 
weather index and an aggregate market index, then the market price of weather 
risk must be zero (Hull 2006). To observe the correlation, we use the annual 
personal income data (to represent the aggregate market index) and annualized 
GDD and precipitation residuals for each of the four counties. There is a 
statistically significant correlation between personal income and weather series 
residuals for only Chisago County. Odening et al. (2007) also shows that there 
is no (or negligible) correlation between rainfall indexes and stock market 
returns for the precipitation option. In addition, Turvey (2005) argues that the 
market price of weather risk should be zero in equilibrium because of spatial 
arbitrage.

To compare with the hedging cost and effectiveness of weather options, 
two crop insurance plans, multiple peril crop insurance (MPCI) and the group 
risk plan (GRP) are considered because both plans protect individual farmers 
against production risk caused by adverse weather. MPCI provides farmers with 
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farm-level indemnities while GRP insures farmers at the county level. Crop 
insurance premiums are obtained from the crop insurance calculator based on 
farm location, actual production history (APH), and coverage levels (University 
of Illinois). We calculate the MPCI premium for each of the four counties as 
an average of MPCI premiums of the 24 representative farmers for each county 
while the GRP premiums are same for all farmers in the same county.

There is no hedging instrument which provides 100 percent coverage 
to farmers. MPCI insures each farmer’s crop from 50 to 85 percent of his or 
her APH yield while GRP insures each farmer’s crop from 70 to 90 percent 
of his or her county APH yield. On the other hand, weather derivatives induce 
a hedging gap, caused by the imperfect relationship between crop yield and 
weather variables. Therefore, we calculate the weighted hedging costs for 
MPCI, GRP, and weather options by adjusting each cost by the corresponding 
coverage ratio in order to compare the hedging cost at the same coverage level.

3. Hedging Effectiveness

Using a stochastic expected utility framework, the hedging effectiveness of 
weather options is evaluated by comparing several simulated risk indicators: 
certainty equivalent (CE), risk premium (RP), Sharpe ratio (SR), and 
value-at-risk (VaR) among alternative hedging strategies. We assume that the 
farmer has a negative exponential utility function whose expectation is specified 
as:

(8)  E[U(π)] = E[-exp(-γπ)]

where exp(·) is an exponential function, γ is the degree of risk aversion, and 
π is the profit. The advantage of this utility function is that the degree of 
concavity (γ) is independent of profit (π). This implies that the utility function 
shows constant absolute risk aversion for γ > 0, regardless of the profit or loss 
level. The certainty equivalent (CE) and risk premium (RP) are measured based 
on the negative exponential utility function.

Profit is calculated as crop revenue less total production cost per 
planted acre, where crop revenue is the product of uncertain yield and price. 
Uncertain crop yields are simulated based on the estimated yield response 
model and simulated weather processes with the assumption of a normally 
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distributed error term in the yield response model. Crop price is taken from 
maximum price elections set by the RMA every year. Total production cost is 
estimated based on county-level yields and costs using the FINBIN farm 
financial database provided by Center for Farm Financial Management. Payoffs 
from hedging instruments (such as crop insurance and weather options) are 
included in crop revenues and hedging costs are added to production costs.

The certainty equivalent (CE) value is obtained by solving the expected 
negative exponential utility function (8) for π, which becomes CE(π) = (1 / γ) 
ln E[U(π)]. The risk premium (RP) equals E(π) – CE(π). The CE and RP 
measures have been used in the traditional expected utility model by assuming 
the decision maker is an expected utility maximizer with a Bernoulli utility 
function. The Sharpe ratio (SR) is defined as {E(R)-Rf}/σ(R). Here E(R) is the 
expected rate of return from the crop production, Rf is the risk-free rate of 
return (0.05 in this study), and σ(R) is the standard deviation of the crop 
production returns. The value-at-risk (VaR) is measured using Monte Carlo 
simulation at the 90% confidence level.

4. Geographic Basis Risk and Spatial Aggregation

Weather options are priced using the weather process at each of the four 
locations, assuming the existence of an over-the-counter (OTC) weather option 
contract for the weather index at each location. However, OTC weather options 
based on each specific remote location are not traded due to liquidity and fair 
pricing problems. Instead, the Chicago Mercantile Exchange (CME) offers 
weather options and futures for several major international cities. Thus, 
geographic basis risk may arise when we use the CME options instead of OTC 
options. To measure the geographic basis risk for each county, we compare the 
hedging effectiveness of CME options (based on the Minneapolis weather 
index) with OTC options (based on each local weather index) because there is 
no geographic basis risk in using the OTC options.

Woodard and Garcia (2007) show that the use of spatial aggregation 
diminishes the degree to which geographic basis risk impedes effective hedging. 
We also observe the improvement of hedging effectiveness by using weather 
options as the level of aggregation increases (from the farm level, to the county 
level, to the four-county level).
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Ⅳ. Empirical Results

Three alternative yield response models are estimated: linear, quadratic, and 
Cobb-Douglas. The quadratic yield response model fits the relationship between 
crop yield and the two weather variables best (Table 3)1. The R-square meas-
ures are lower than 0.50 for all equations. This result is expected since we re-
strict the nature of specific event risks to the rainfall and GDD between June 
1 and August 31, and we assume that direct physical inputs are held constant. 
Rather than interpreting R-square in terms of low predictive ability, it should 
be interpreted as the percent of total variability explained by the specific weath-
er events (the June 1 to August 31 rainfall and temperature). In addition, not 
all estimated coefficients of the models are statistically significant, which means 
some weather variables with insignificant coefficient cannot be used to hedge 
the yield risk. For example, neither β2 nor β4 for Luverne is significant and so 
we cannot use weather options underlying GDD since there is no significant re-
lationship between soybean yield and GDD for Luverne. On the other hand, 
Preston and Rush City can use weather options underlying both rainfall and 
GDD even though β4 for GDD is not significant but β2 is still significant at 
5%. This implies that there exists some relationship between soybean yield and 
GDD for Preston and Rush City even though the relationship is not as sig-
nificant as that between soybean yield and rainfall.

TABLE 3.  Quadratic Yield Response Model for Soybean

Yt = β0 + β1Rt + β2Gt + β3 Rt
2 + β4 Gt

 2 + εt

Yt is the detrended crop yield (bushels per planted acre), Rt is the deviation of 
the cumulative daily rainfall for growing season (June to August), and Gt is the 
deviation of the cumulative daily growing-degree-day (GDD) for growing 
season.

1 In estimating the yield response model, we considered various types of variables with

rainfall and GDD such as interaction terms but the variables are not significant and

do not improve the model fit. Previous studies(Thompson, 1988; Tannura, et al.,

2008) also estimate the quadratic yield response model used in this study.
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Location
Coefficient

F R2 S.E. Obs.
β0 (S.E.) β1 (S.E.) β2 (S.E.) β3 (S.E.) β4 (S.E.)

Luverne 1.99**(0.67) 0.33**(0.15) 0.01 (0.00) -0.15**(0.02)  0.00 (0.00) 12.26** 0.44 4.12 68

Morris 1.85**(0.80) 0.27 (0.18) 0.00 (0.00) -0.10* (0.06) -0.00**(0.00)  4.23** 0.21 4.23 68

Preston 1.39* (0.80) 0.32**(0.12) 0.01**(0.00) -0.05**(0.02) -0.00 (0.00)  4.49** 0.22 4.28 68

RushCity 0.72 (0.66) 0.58**(0.13) 0.01**(0.00) -0.05**(0.02) -0.00 (0.00)  8.34** 0.35 3.70 68

** Significant at 5% level     * Significant at 10% level

There are two distinguishing characteristics of the estimated quadratic 
function. First, large deviations (in either direction) from the historical mean 
precipitation and temperature tend to depress yields. This implies that either too 
humid (too hot) or too dry (too cold) weather will depress yields. Second, a 
little higher than average precipitation and temperature is predicted to optimize 
the yield response function. For example at Luverne, to optimize the quadratic 
yield response function for rainfall, we rewrite the function Yt = 1.99 + 0.33Rt 

– 0.15Rt
2  in the form Yt = -0.15(Rt – 1.1)2 + 2.1715. Then the vertex (Rt, Yt) 

is (1.1, 2.1715). This implies that the amount of precipitation which is 1.1 
inches higher than average precipitation maximizes soybean yield.

The negative quadratic curve in Figure 1 shows the estimated quadratic 
yield response function for Preston, one of our four counties, graphically. The 
two distinguishing characteristics of the estimated quadratic function explained 
in Table 3 are observed more clearly. For rainfall in the first figure, either 
below -3 inches or above 9.045 inches from the average rainfall depresses 
yields and the optimal amount of rainfall to maximize yield is 3 inches higher 
than the average. Based on the estimated quadratic function, we select a long 
strangle hedging strategy which involves buying a put option and a call option 
with different strike levels on the underlying precipitation and GDD variables 
in order to provide the buyer of the option (the farmer) with protection from 
extreme weather events in either direction. The optimal strike and tick values 
of the options are also determined based on the estimated parameters.
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FIGURE 1.  Estimated Soybean Yield Response Functions and Strangle Hedging 
Strategies in Fillmore County (Preston)
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Option prices by the daily simulation method are calculated over 
10,000 simulated weather processes using the estimated parameters. Most of the 
parameters of the daily low temperature process model reported in Table 4 are 
significant at the 5% level2. These estimated parameters explain reasonably well 

2 Since the four selected counties show similar results to one another, we report the

results for Luverne and Preston. Full results for all tables are available from the au-

thor upon request.
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the seasonal temperature process in southern Minnesota where the standard de-
viation of winter temperature during December-February is about twice as large 
as that of summer temperature during June-August. The average arrival rate (λ), 
the variance of the jump (δ2), and the variance of the process (σ2) are much 
larger in winter than in summer. The rate of mean reversion (κ) is higher in 
summer compared to winter, which implies that irregular jumps in summer tend 
to more quickly revert to the mean. This also supports a smaller standard devia-
tion for the summer temperature. The result of the daily high temperature proc-
ess model is not reported since it is similar to the daily low temperature model. 
The GDD processes are simulated based on the estimated parameters of the dai-
ly low and high temperature process models.

TABLE 4.  Temperature Process Model Parameters for Daily Low Temperature

dTt = (κ(Tt
m – Tt) – λθ)dt + σdz + φdq 

Parameters κ, λ, θ, δ2, σ2 represent the rate of mean reversion, average arrival 
rate, mean jump size, variance of the jump, and variance of the Brownian mo-
tion process, respectively. Subscripts “s” and “w” stand for summer and winter, 
respectively. 

Parameter
Luverne Preston

Estimate S.E. Estimate S.E.
κ 0.12** 0.00 0.10** 0.00
κs 0.16** 0.00 0.14** 0.00
κw 0.10** 0.00 0.09** 0.00
λ 0.08** 0.02 0.46** 0.07
λs 0.01 0.01 0.19** 0.07
λw 0.33** 0.11 0.44** 0.16
θ -0.33** 0.07 -0.80** 0.08
θs -0.19* 0.10 -0.57** 0.12
θw -0.55** 0.16 -0.63** 0.19
δ2 3.72** 0.06 4.00** 0.07
δs

2 2.68** 0.08 2.88** 0.09
δw

2 4.38** 0.13 4.82** 0.15
σ2 3.88** 0.03 4.73** 0.04
σs

2 3.04** 0.05 3.70** 0.06
σw

2 4.70** 0.08 5.79** 0.10
** Significant at 5% level     * Significant at 10% level
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The estimated parameters of the precipitation process model in Table 
5 explain the historical precipitation process in the four counties. Preston and 
Rush City are located in the east, and they have relatively larger amounts of 
precipitation compared to Luverne and Morris in the west. The estimated tran-
sition probability from dryness to rainfall (P(W/D)) and from rainfall to rainfall 
(P(W/W)) are higher, and the β parameter of the gamma distribution (which de-
termines the extent of extremely heavy rainfall) are larger for Preston and Rush 
City compared to Luverne and Morris.

TABLE 5.  Precipitation Process Model Parameters

Pt = Pt-1 · Pt(W/W) + (1- Pt-1) · Pt(W/D), for t = 1,2,…,n          
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Pt, Pt(W/W), and Pt(W/D) represent the probability of rainfall occurrence at 
day t, the transition probability from rainfall at day t-1 to rainfall at day t, 
and the transition probability from dryness at day t-1 to rainfall at day t, 
respectively. In the gamma distribution function, Yt is the amount of precip-
itation (given Xt=1 when day t is rainy), α and β are distribution parameters. 
Subscripts 6, 7, and 8 stand for June, July, and August, respectively.

Parameter Luverne Morris Preston Rush City
P(W/D)6 0.27 0.33 0.31 0.33
P(W/D)7 0.23 0.30 0.28 0.29
P(W/D)8 0.21 0.26 0.27 0.28
P(W/W)6 0.44 0.48 0.48 0.50
P(W/W)7 0.34 0.40 0.37 0.38
P(W/W)8 0.37 0.40 0.42 0.38

α6 0.61 0.63 0.61 0.62
α7 0.61 0.63 0.61 0.62
α8 0.62 0.64 0.62 0.61
β6 17.95 13.81 18.43 15.74
β7 17.84 14.60 18.57 16.50
β8 16.23 13.16 17.21 17.99
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The option prices obtained by applying the daily simulation method 
over 10,000 simulated GDD and precipitation processes are reported for 
Luverne and Preston in Table 6. The tick values and option prices are measured 
in 2007 dollars in order to compare with the 2007 crop insurance premiums. 
In order to observe the relative option price level, the prices are reported as 
the percent of the 2007 soybean revenue in parenthesis. The with (w/) Basis 
Risk variable is the option price calculated under the local basis risk of (1 – 
R2) in the yield response model. Local basis risk is interpreted as the hedging 
gap caused by an imperfect weather yield relationship in the same geographic 
location. The without (w/o) Basis Risk variable reflects weighted option prices 
by adjusting each price by the corresponding R2 measure, assuming 100% of 
R2 provides perfect coverage. For example, at Luverne the total price for both 
the precipitation call and put options is $4.24 per acre under the local basis risk 
of 0.56 (R2 = 0.44). The weighted option price assuming no local basis risk 
is $9.64 per acre, which is calculated by dividing $4.24 by 0.44. This 
adjustment is an approximate measure to compare the weighted hedging costs 
for weather options and crop insurances at the same coverage levels. Simulated 
total prices for Preston are $3.45 per acre (or 0.99% of revenue) with basis risk 
and $15.68 per acre (or 4.51% of revenue) without basis risk.

TABLE 6.  Simulated Weather Option Prices

Location
Precipitation Options GDD Options Both Options

Put (%) Call (%) Put (%) Call (%) w/Basis Risk w/o Basis Risk
Luverne
   Strikea/ 8.09 15.58 - c/ - c/

   Tickb/ $8.11 $8.11 - -
   Price $2.79 (0.78%) $1.45 (0.41%) - - $4.24 (1.19%) $9.64 (2.72%)
Preston
   Strike 10.61 22.59 1,622 2,358
   Tick $4.41 $4.41 $0.11 $0.11
   Price $1.67 (0.48%) $0.13 (0.04%) $1.65 (0.47%) $0.00 (0.00%) $3.45 (0.99%) $15.68 (4.51%)

a/ Strike is the predetermined level by contract at which the put (call) option buyer can 
sell (buy) the weather event to the option seller. The unit of strike for precipitation 
options is inches and the unit of strike for GDD options is degree days.  

b/ Tick value is the indemnity payment per unit of adverse weather event (per inch for 
precipitation options and per degree for temperature options). The tick values and 
option prices are measured per acre. 

c/ Not available because we do not purchase the options based on the estimated yield 
response functions.
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In Table 7, the prices of weather options are compared to those of two 
crop insurance products, MPCI and GRP. The prices of weather options and 
GRP are calculated at the county level, while MPCI prices are calculated at the 
farm level. For crop insurance prices, the 85% coverage variable means that the 
premium(price) is calculated at the 85% coverage level, the highest level in the 
MPCI plan, and 100% is the adjusted premium recalculated at the 100% 
coverage level (even though full coverage insurance is not provided in the 
market). The first two rows of MPCI prices in each location are the amounts 
paid by the farmer, which is assumed to be 62% of total premium. The 
remaining 38% is the government subsidy, as set by the Agricultural Risk 
Protection Act of 2000. Subsidy rates vary by coverage level and type of 
insurance. The GRP at the 85% coverage level is provided with 59% subsidy 
rate so that farmers pay only 41% of the total premium. The last row of each 
location is the total premium at the 100% coverage level, assuming no subsidy 
is provided.

TABLE 7.  Prices of Weather Options and Crop Insurance

Location
Weather Option MPCI (Price Election: $7.00/bu. 

in 2007)
GRP (Price Election: $7.00/bu. 

in 2007)

Coverage Price (%)a/ Coverage (Gov. 
Subsidy) Price (%)a/ Coverage (Gov. 

Subsidy) Price (%)a/

Luverne
(Avg. APH 10Y 
= 45.0 bu./acre)c/

44% $ 4.24 (1.19%) 85% (38%)b/ $12.15 (3.42%) 85% (59%)b/ $ 5.44 (1.53%)

100% $ 9.64 (2.72%) 100% (38%) $14.29 (4.03%) 100% (59%) $ 6.40 (1.80%)

100% ( 0%) $23.06 (6.50%) 100% ( 0%) $15.61 (4.40%)

Preston
(Avg. APH 10Y 
= 44.6 bu./acre)

22% $ 3.45 (0.99%) 85% (38%) $17.17 (4.93%) 85% (59%) $ 3.17 (0.91%)

100% $15.68 (4.50%) 100% (38%) $20.20 (5.80%) 100% (59%) $ 3.73 (1.07%)

100% ( 0%) $32.58 (9.36%) 100% ( 0%) $ 9.10 (2.61%)

a/ Prices represented as a percent (in the parenthesis) are calculated as a percent of the 
soybean revenue per acre in 2007.

b/ The 85% coverage variable means that the crop insurance premium is calculated at 
the 85% coverage level, and 100% coverage variable is the adjusted premium 
recalculated at the 100% coverage level. The 38% in the parenthesis for MPCI (59% 
in the parenthesis for GRP) represent the government subsidy rate.  

c/ The average APH 10Y is the average of the historical county-level soybean yields 
during 1997-2006.
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The approximate MPCI premiums for soybean at the 100% coverage 
level with no government subsidy are $23.06/acre at Luverne and $32.58/acre 
at Preston. These premiums are much higher than the corresponding weather 
option premiums of $9.64/acre (Luverne) and $15.68/acre (Preston) at the 100% 
coverage level. The main reason for the higher MPCI premiums compared with 
weather options is that the MPCI premium is calculated at the individual farm 
level, which reflects larger yield variability. The weather option premium is 
calculated at the county level based on the weather indices in the county 
weather station, which removes the individual farmer’s idiosyncratic yield 
variability. When the weather option premiums are compared with GRP 
premiums at the 100% coverage level with no subsidy, the gaps between the 
two premiums are much smaller. This is because both weather options and GRP 
premiums are measured at the county level. The GRP premiums at the 100% 
coverage level without subsidy for Luverne and Preston are $15.61/acre and 
$9.10/acre, respectively.

In Table 8 we compare hedging effectiveness indicators when using 
alternative hedging strategies at the farm level to analyze weather options as 
a more efficient risk management tool for farmers at Luverne. The hedging 
effectiveness for the other locations is similar. The seven alternative hedging 
strategies include: no hedge, MPCI with no subsidy, MPCI with subsidy, GRP 
with no subsidy, GRP with subsidy, local station-based weather options, and 
Minneapolis-based weather options. For the farm-level risk indicators, we use 
the average of the individual 24 farm risk indicators in each location based on 
10,000 simulated yields and corresponding cost estimates for each individual 
farm.

The hedging effectiveness of weather options compared with a no 
hedge position at the farm level is limited. Higher values for the Sharpe ratio, 
value-at-risk, and certainty equivalent, and a lower risk premium all imply 
greater hedging effectiveness. Most of the risk indicators that use weather 
options at the farm level are not significantly improved compared with the no 
hedge alternative and they are worse when compared with both the MPCI and 
GRP hedges. For example, when using local weather options at Luverne, the 
Sharpe ratio, VaR, certainty equivalent at γ=0.005, and risk premium at γ=0.005 
are 1.240, $35.03, $147.86, and $34.39, respectively. These are slightly 
improved from the values obtained with no hedge (1.226, $32.69, $146.73, and 
$35.55). They are worse than those derived from using MPCI with no 
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government subsidy (1.322, $61.07, $151.47, and $24.22). Vedenov and Barnett 
(2004) also find there is only limited efficacy of weather derivatives in hedging 
disaggregated production exposures due to large yield variability at the farm 
level. MPCI insures the highly variable individual farm-level yields relatively 
better than weather derivatives because MPCI covers individual farm-level 
losses directly. Even GRP based on the county-level yield provides better 
hedging effectiveness to individual farmers compared with weather options, 
mainly due to the hedging gap caused by local basis risk (an imperfect 
weather-yield relationship) in the weather options. These results are consistent 
with the previous literature, which shows that weather options are not an 
effective hedging tool for individual farmers implying that farmers will continue 
to prefer federal crop insurance for their weather risk management. 

TABLE 8.  Hedging Effectiveness at the Farm Level

Location Indicator
Farm Level (Average of Farms)

No Hedge MPCI  
(No Sub.)

MPCI 
(Subsidy)

GRP  
(No Sub.)

GRP 
(Subsidy)

Option 
(Local)

Option 
(Mpls.)

Luverne

Net Income $182.28 $175.69 $183.29 $183.52 $191.35 $182.25 $183.28

Sharpe Ratioa/ 1.226 1.322 1.381 1.387 1.449 1.240 1.247

VaR (10%)b/ $32.69 $61.07 $68.69 $65.65 $73.48 $35.03 $36.07

CEc/ (γ=0.001) $174.76 $170.14 $177.74 $177.88 $185.71 $174.94 $175.98

CE (γ=0.005) $146.73 $151.47 $159.07 $158.62 $166.45 $147.86 $148.89

CE (γ=0.009) $120.70 $137.05 $144.65 $143.44 $151.27 $122.97 $124.01

RPc/ (γ=0.001) $7.52 $5.55 $5.55 $5.65 $5.65 $7.31 $7.31

RP(γ=0.005) $35.55 $24.22 $24.22 $24.90 $24.90 $34.39 $34.39

RP(γ=0.009) $61.57 $38.64 $38.64 $40.08 $40.08 $59.27 $59.27

a/ Sharpe Ratio is calculated under the assumption of risk free rate of 0.05.  
b/ Value-at-risk is measured at the 10% confidence interval.  
c/ Certainty equivalent and risk premium are measured at the three different levels of risk 

aversion (γ=0.001, 0.005, 0.009).

If individual farmers are not the likely primary users of weather 
options, then how might these options play a role in weather risk management? 
In order to address this question, we note that hedging effectiveness increases 
as spatial aggregation increases. Table 9 illustrates the effect of spatial 
aggregation on hedging effectiveness by using weather options where farm level 
(Average of Farms), county level (Average of Counties), and four-county 
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aggregate level (Aggregate) are compared for soybean. The Average of Farms 
statistics are calculated as the average of the individual 96 farm indicators in 
the four counties (24 farms for each of the four counties). The Average of 
Counties statistics are calculated as the average of the individual four county 
indicators. The four-county Aggregate results are obtained by averaging the data 
across counties and then performing the analysis. All risk indicators using 
Minneapolis-based options improve as the level of aggregation increases from 
the farm level to the four-county aggregate level. The Sharpe ratio and VaR 
by using Minneapolis-based weather options increase remarkably from 0.803 to 
1.506 and from -$27.11 to $35.39, respectively, as the level of spatial 
aggregation increases. The certainty equivalent and risk premium are also 
improved at all levels of risk aversion as the level of spatial aggregation 
increases.

TABLE 9.  Hedging Effectiveness and Spatial Aggregation

Options Indicator
Four Counties

Average of Farms Average of Counties Aggregate

Minneapolis
-based

Net Income $134.34 $135.09 $130.95
Sharpe Ratio 0.803 1.229 1.506
VaR (10%) -$27.11 $14.11 $35.39

CE (γ=0.001) $125.46 $130.65 $128.17
CE (γ=0.005) $92.28 $112.87 $117.02
CE (γ=0.009) $60.15 $95.11 $105.82
RP (γ=0.001) $8.88 $4.44 $2.78
RP (γ=0.005) $42.06 $22.22 $13.92
RP (γ=0.009) $74.19 $39.98 $25.13

In the federal crop insurance program, private crop insurance 
companies provide insurance products to farmers as an agent of the government 
and they transfer most of that crop risk exposure to the government. However, 
in the past the government has not hedged these risk exposures. Rather, 
government has simply tried to diversify the idiosyncratic risks by spatially 
aggregating the crop yield risks across farmers. This implies a significant social 
cost, because the potential losses caused by not hedging risk exposures would 
need to be covered by taxpayers. Although idiosyncratic crop yield risk can be 
reduced by the government through aggregating the individual risk exposures 
at the county or higher level, the government still faces systematic weather risk 
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without a risk hedge. How might the government use weather options as a risk 
management tool to reduce the implied social cost?

TABLE 10.  Government Use of Weather Options at the County Level

County Level
Location Indicator No Hedge Option Option

(Subsidy) (Local) (Mpls.)

Luverne
Net Income  $ 0.57  $ 0.54  $ 1.58
VaR (10%) -$10.58 -$ 7.24 -$ 6.20

Morris
Net Income -$ 1.88 -$ 1.87 -$ 2.31
VaR (10%) -$22.81 -$22.08 -$22.52

Preston
Net Income  $ 0.04  $ 0.04  $ 0.53
VaR (10%) -$ 0.84 -$ 0.47  $ 0.02

Rush City
Net Income -$ 5.65 -$ 5.65 -$ 5.12
VaR (10%) -$34.39 -$33.34 -$32.38

Suppose that the government provides GRP products with subsidy to 
farmers and hedges those crop risk exposures by purchasing weather options at 
the county level. In Table 10, we compare the net income and value-at-risk of 
the government between a no hedge position, a local station-based weather 
option hedge, and a Minneapolis-based weather option hedge for the four 
counties. The net income of the government realized from the federal crop 
insurance program is computed as: the GRP premium received from farmers 
minus the GRP indemnity payments paid to farmers minus the weather option 
premium paid to the option provider for the risk hedge plus the weather option 
payoffs received from the option provider. Let us assume no other 
administrative costs in this calculation. The net income and VaR of the 
government is calculated over the 10,000 simulated county-level crop yields for 
each of the four counties. Here the only risk indicator used for comparison is 
the VaR. The Sharpe ratio of the government is not measured because it is 
difficult to evaluate the federal service cost in order to calculate the Sharpe 
ratio. In addition, the certainty equivalent and risk premium at various levels 
of risk for the government is not used because the government is assumed to 
act as a risk-neutral agent.

The government’s VaR improves from -$10.58/acre with no hedge to 
-$6.20/acre by using Minneapolis-based options in Luverne. All other counties 
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show improvements in the VaR of the government by using either local 
station-based weather options or Minneapolis-based weather options to hedge 
yield risk. This implies that the government, as a reinsurer, could reduce 
idiosyncratic risk by aggregating farm-level production exposures and hedging 
the remaining systematic weather risk with spatially-aggregated weather 
derivatives. As a result, weather options might be used by the government as 
an effective hedging tool at the county level (or higher levels of aggregation) 
for the purpose of reducing the social cost of crop insurance.

Since local weather options based on the four specific counties are not 
traded due to liquidity and fair pricing problems in the market, the CME option 
is used based on several large reference cities near to the counties. Here we 
need to consider geographic basis risk, which is caused by the difference 
between the weather index at a CME reference city and at a specific farm 
location, where geographic basis risk is measured as the difference in hedging 
effectiveness between local and nonlocal derivatives. When comparing risk 
indicators between Option (Local) and Option (Minneapolis) in Tables 8 and 
10, the difference is small. This implies that geographic basis risk is minimal 
in southern Minnesota. Woodard and Garcia (2007) also find that the 
geographic basis risk from hedging with nonlocal contracts is small when 
comparing hedge effectiveness between local options. 

This result is interesting since the conventional wisdom is that 
geographic basis risk may be a large impediment to the implementation of 
weather hedges in the agricultural industry. It is likely due to the fact that the 
Midwest has relatively homogeneous (less variable) weather conditions across 
counties when compared to other U.S. regions. In particular the correlations of 
daily temperature between Minneapolis and each of the four local stations in 
this study are higher than 0.90. Even though daily precipitation tends to be less 
spatially correlated, growing season precipitation shows a relatively high 
correlation that is close to 0.50 between Minneapolis and each of the four local 
stations. This result indicates that local weather risk can be effectively hedged 
to produce soybean with Minneapolis-based weather derivatives in southern 
Minnesota where geographic basis risk is not large. However, this approach 
should be applied cautiously to other locations, crops, or other types of weather 
derivatives after considering spatial correlation of crop losses and weather 
variables across locations. 
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Ⅴ. Conclusions

Social cost includes the explicit and implicit costs that exist in the US federal 
crop insurance program including government insurance program subsidies and 
the government’s unhedged risk exposure. When hedging cost and effectiveness 
of weather options and crop insurance are compared for soybean farmers in 
southern Minnesota, the hedging effectiveness of using weather options is 
limited at the farm level as compared to crop insurance products. This is 
because weather options insure against adverse weather events that cause 
damage, while crop insurance protects farmers against their crop losses directly. 
This is further evidence that individual farmers will continue to prefer using 
crop insurance with the government premium subsidy rather than weather 
derivatives as a weather risk management strategy. However, the US 
government is the reinsurer in the crop insurance program and it currently does 
not fully hedge the weather risk exposure. Historical simulation is used to 
demonstrate that the government could reduce social cost due to the unhedged 
risk exposure by designing a program that uses weather options at the county 
or higher levels of aggregation in the financial market. The government could 
use this approach to selectively reduce its risk exposure and the need to 
subsidize the crop insurance program.  

This study could be applied to our crop insurance program in Korea 
in the same way as in the US program. Our government as a reinsurer for 
private crop insurance companies covers losses of insurance companies in case 
of loss ratio3 exceeding 180% based on the reinsurance contract between the 
government and insurance companies. Similar to US government, our 
government does not hedge its own high risk exposure. Even though the 
unhedged high risk exposure will not be considered as explicit social cost in 
normal seasons, our government should compensate for large-scale losses of 
private insurance companies using tax payers’ money when the loss ratio 
exceeds 180%. Our government as a hedger of its high risk exposure could 
purchase reinsurance from international reinsurance companies but the 
reinsurance premium would be relatively expensive compared to weather option 

3 The loss ratio is the ratio of total losses incurred in claims divided by the total pre-

miums earned.
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premium. In this context, weather derivatives could be used as an efficient 
hedging instrument for our government.
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